545 research outputs found
Bipolar High Field Excitations in Co/Cu/Co Nanopillars
Current-induced magnetic excitations in Co/Cu/Co bilayer nanopillars
(50 nm in diameter) have been studied experimentally at low temperatures
for large applied fields perpendicular to the layers. At sufficiently high
current densities excitations, which lead to a decrease in differential
resistance, are observed for both current polarities. Such bipolar excitations
are not expected in a single domain model of spin-transfer. We propose that at
high current densities strong asymmetries in the longitudinal spin accumulation
cause spin-wave instabilities transverse to the current direction in bilayer
samples, similar to those we have reported for single magnetic layer junctions.Comment: 4 pages, 4 figures+ 2 additional jpg figures (Fig. 2d and Fig. 3)
high resolution figures and recent related articles are available at:
http://www.physics.nyu.edu/kentlab/news.htm
Spin-transfer-induced excitations in bilayer magnetic nanopillars at high fields: The effects of contact layers
Current-induced excitations in bilayer magnetic nanopillars have been studied
with large magnetic fields applied perpendicular to the layers at low
temperature. Junctions investigated all have Cu/Co/Cu/Co/Cu as core layer
stacks. Two types of such junctions are compared, one with the core stack
sandwiched between Pt layers (type A), the other with Pt only on one side of
the stack (type B). Transport measurements show that these two types of
junctions have similar magnetoresistance and slope of critical current with
respect to field, while A samples have higher resistance. The high-field
bipolar excitation, as was previously reported [Oezyilmaz et al., Phys. Rev. B
71, 140403(R) (2005)], is present in B samples only. This illustrates the
importance of contact layers to spin-current-induced phenomena. This also
confirms a recent prediction on such spin-wave excitations in bilayers.Comment: 3 pages, 3 figure
Current Induced Excitations in Cu/Co/Cu Single Ferromagnetic Layer Nanopillars
Current-induced magnetic excitations in Cu/Co/Cu single layer nanopillars
(~50 nm in diameter) have been studied experimentally as a function of Co layer
thickness at low temperatures for large applied fields perpendicular to the
layers. For asymmetric junctions current induced excitations are observed at
high current densities for only one polarity of the current and are absent at
the same current densities in symmetric junctions. These observations confirm
recent predictions of spin-transfer torque induced spin wave excitations in
single layer junctions with a strong asymmetry in the spin accumulation in the
leads.Comment: 4 pages, 3 figures, submitted to Phys. Rev. Let
Experimental comparison of dynamic tracking performanceof iGPS and laser tracker
External metrology systems are increasingly being integrated with traditional industrial articulated robots, especially in the aerospace industries, to improve their absolute accuracy for precision operations such as drilling, machining and jigless assembly. While currently most of the metrology assisted robotics control systems are limited in their position update rate, such that the robot has to be stopped in order to receive a metrology coordinate update, some recent efforts are addressed toward controlling robots using real-time metrology data. The indoor GPS is one of the metrology systems that may be used to provide real-time 6DOF data to a robot controller. Even if there is a noteworthy literature dealing with the evaluation of iGPS performance, there is, however, a lack of literature on how well the iGPS performs under dynamic conditions. This paper presents an experimental evaluation of the dynamic measurement performance of the iGPS, tracking the trajectories of an industrial robot. The same experiment is also repeated using a laser tracker. Besides the experiment results presented, this paper also proposes a novel method for dynamic repeatability comparisons of tracking instrument
Current-Induced Effective Magnetic Fields in Co/Cu/Co Nanopillars
We present a method to measure the effective field contribution to
spin-transfer-induced interactions between the magnetic layers in a trilayer
nanostructure, which enables spin-current effects to be distinguished from the
usual charge-current-induced magnetic fields. This technique is demonstrated on
submicron Co/Cu/Co nanopillars. The hysteresis loop of one of the magnetic
layers in the trilayer is measured as a function of current while the direction
of magnetization of the other layer is kept fixed, first in one direction and
then in the opposite direction. These measurements show a current-dependent
shift of the hysteresis loop which, based on the symmetry of the magnetic
response, we associate with spin-transfer. The observed loop-shift with applied
current at room temperature is reduced in measurements at 4.2 K. We interprete
these results both in terms of a spin-current dependent effective activation
barrier for magnetization reversal and a spin-current dependent effective
magnetic field. From data at 4.2 K we estimate the magnitude of the
spin-transfer induced effective field to be Oe
cm/A, about a factor of 5 less than the spin-transfer torque.Comment: 6 pages, 4 figure
Niobium superconducting nanowire single-photon detectors
We investigate the performance of superconducting nanowire photon detectors
fabricated from ultra-thin Nb. A direct comparison is made between these
detectors and similar nanowire detectors fabricated from NbN. We find that Nb
detectors are significantly more susceptible than NbN to thermal instability
(latching) at high bias. We show that the devices can be stabilized by reducing
the input resistance of the readout. Nb detectors optimized in this way are
shown to have approximately 2/3 the reset time of similar large-active-area NbN
detectors of the same geometry, with approximately 6% detection efficiency for
single photons at 470 nm
Current-Induced Magnetization Reversal in High Magnetic Fields in Co/Cu/Co Nanopillars
Current-induced magnetization dynamics in Co/Cu/Co trilayer nanopillars
(~100nm in diameter) has been studied experimentally for large applied fields
perpendicular to the layers. An abrupt and hysteretic increase in dynamic
resistance is observed at high current densities for one polarity of the
current, comparable to the giant magnetoresistance effect observed at low
fields. A micromagnetic model, that includes a spin-transfer torque, suggests
that the current induces a complete reversal of the thin Co layer to alignment
antiparallel to the applied field-that is, to a state of maximum magnetic
energy.Comment: 11 pages, 3 figures, (submitted to Phys. Rev. Lett.), added missing
figure caption of fig. 3, updated to published versio
Spatial distribution of local currents of massless Dirac fermions in quantum transport through graphene nanoribbons
We employ the formalism of bond currents, expressed in terms of the
nonequilibrium Green functions, to image the charge flow between two sites of
the honeycomb lattice of graphene ribbons of few nanometers width. In sharp
contrast to nonrelativistic electrons, current density profiles of quantum
transport at energies close to the Dirac point in clean zigzag graphene
nanoribbons (ZGNR) differs markedly from the profiles of charge density peaked
at the edges due to zero-energy localized edge states. For transport through
the lowest propagating mode induced by these edge states, edge vacancies do not
affect current density peaked in the center of ZGNR. The long-range potential
of a single impurity acts to reduce local current around it while concurrently
increasing the current density along the zigzag edge, so that ZGNR conductance
remains perfect .Comment: 5 pages, 5 figure
“We Are Talking About Practice”: the Influence of Mindfulness vs. Relaxation Training on Athletes’ Attention and Well-Being over High-Demand Intervals
- …
