847 research outputs found

    Local likelihood estimation for covariance functions with spatially-varying parameters: the convoSPAT package for R

    Get PDF
    In spite of the interest in and appeal of convolution-based approaches for nonstationary spatial modeling, off-the-shelf software for model fitting does not as of yet exist. Convolution-based models are highly flexible yet notoriously difficult to fit, even with relatively small data sets. The general lack of pre-packaged options for model fitting makes it difficult to compare new methodology in nonstationary modeling with other existing methods, and as a result most new models are simply compared to stationary models. Using a convolution-based approach, we present a new nonstationary covariance function for spatial Gaussian process models that allows for efficient computing in two ways: first, by representing the spatially-varying parameters via a discrete mixture or "mixture component" model, and second, by estimating the mixture component parameters through a local likelihood approach. In order to make computation for a convolution-based nonstationary spatial model readily available, this paper also presents and describes the convoSPAT package for R. The nonstationary model is fit to both a synthetic data set and a real data application involving annual precipitation to demonstrate the capabilities of the package

    Quantifying the effect of interannual ocean variability on the attribution of extreme climate events to human influence

    Full text link
    In recent years, the climate change research community has become highly interested in describing the anthropogenic influence on extreme weather events, commonly termed "event attribution." Limitations in the observational record and in computational resources motivate the use of uncoupled, atmosphere/land-only climate models with prescribed ocean conditions run over a short period, leading up to and including an event of interest. In this approach, large ensembles of high-resolution simulations can be generated under factual observed conditions and counterfactual conditions that might have been observed in the absence of human interference; these can be used to estimate the change in probability of the given event due to anthropogenic influence. However, using a prescribed ocean state ignores the possibility that estimates of attributable risk might be a function of the ocean state. Thus, the uncertainty in attributable risk is likely underestimated, implying an over-confidence in anthropogenic influence. In this work, we estimate the year-to-year variability in calculations of the anthropogenic contribution to extreme weather based on large ensembles of atmospheric model simulations. Our results both quantify the magnitude of year-to-year variability and categorize the degree to which conclusions of attributable risk are qualitatively affected. The methodology is illustrated by exploring extreme temperature and precipitation events for the northwest coast of South America and northern-central Siberia; we also provides results for regions around the globe. While it remains preferable to perform a full multi-year analysis, the results presented here can serve as an indication of where and when attribution researchers should be concerned about the use of atmosphere-only simulations

    Detected changes in precipitation extremes at their native scales derived from in situ measurements

    Full text link
    The gridding of daily accumulated precipitation -- especially extremes -- from ground-based station observations is problematic due to the fractal nature of precipitation, and therefore estimates of long period return values and their changes based on such gridded daily data sets are generally underestimated. In this paper, we characterize high-resolution changes in observed extreme precipitation from 1950 to 2017 for the contiguous United States (CONUS) based on in situ measurements only. Our analysis utilizes spatial statistical methods that allow us to derive gridded estimates that do not smooth extreme daily measurements and are consistent with statistics from the original station data while increasing the resulting signal to noise ratio. Furthermore, we use a robust statistical technique to identify significant pointwise changes in the climatology of extreme precipitation while carefully controlling the rate of false positives. We present and discuss seasonal changes in the statistics of extreme precipitation: the largest and most spatially-coherent pointwise changes are in fall (SON), with approximately 33% of CONUS exhibiting significant changes (in an absolute sense). Other seasons display very few meaningful pointwise changes (in either a relative or absolute sense), illustrating the difficulty in detecting pointwise changes in extreme precipitation based on in situ measurements. While our main result involves seasonal changes, we also present and discuss annual changes in the statistics of extreme precipitation. In this paper we only seek to detect changes over time and leave attribution of the underlying causes of these changes for future work

    Heterocyst placement strategies to maximize growth of cyanobacterial filaments

    Full text link
    Under conditions of limited fixed-nitrogen, some filamentous cyanobacteria develop a regular pattern of heterocyst cells that fix nitrogen for the remaining vegetative cells. We examine three different heterocyst placement strategies by quantitatively modelling filament growth while varying both external fixed-nitrogen and leakage from the filament. We find that there is an optimum heterocyst frequency which maximizes the growth rate of the filament; the optimum frequency decreases as the external fixed-nitrogen concentration increases but increases as the leakage increases. In the presence of leakage, filaments implementing a local heterocyst placement strategy grow significantly faster than filaments implementing random heterocyst placement strategies. With no extracellular fixed-nitrogen, consistent with recent experimental studies of Anabaena sp. PCC 7120, the modelled heterocyst spacing distribution using our local heterocyst placement strategy is qualitatively similar to experimentally observed patterns. As external fixed-nitrogen is increased, the spacing distribution for our local placement strategy retains the same shape while the average spacing between heterocysts continuously increases.Comment: This is an author-created, un-copyedited version of an article accepted for publication in Physical Biology. IOP Publishing Ltd is not responsible for any errors or omissions in this version of the manuscript or any version derived from it. The definitive publisher-authenticated version will be available onlin

    Inverse Geometric Approach to the Simulation of the Circular Growth. The Case of Multicellular Tumor Spheroids

    Full text link
    We demonstrate the power of the genetic algorithms to construct the cellular automata model simulating the growth of 2-dimensional close-to-circular clusters revealing the desired properties, such as the growth rate and, at the same time, the fractal behavior of their contours. The possible application of the approach in the field of tumor modeling is outlined

    Evaluation of early and late presentation of patients with ocular mucous membrane pemphigoid to two major tertiary referral hospitals in the United Kingdom

    Get PDF
    PURPOSE: Ocular mucous membrane pemphigoid (OcMMP) is a sight-threatening autoimmune disease in which referral to specialists units for further management is a common practise. This study aims to describe referral patterns, disease phenotype and management strategies in patients who present with either early or established disease to two large tertiary care hospitals in the United Kingdom.\ud \ud PATIENTS AND METHODS: In all, 54 consecutive patients with a documented history of OcMMP were followed for 24 months. Two groups were defined: (i) early-onset disease (EOD:<3 years, n=26, 51 eyes) and (ii) established disease (EstD:>5 years, n=24, 48 eyes). Data were captured at first clinic visit, and at 12 and 24 months follow-up. Information regarding duration, activity and stage of disease, visual acuity (VA), therapeutic strategies and clinical outcome were analysed.\ud \ud RESULTS: Patients with EOD were younger and had more severe conjunctival inflammation (76% of inflamed eyes) than the EstD group, who had poorer VA (26.7%=VA<3/60, P<0.01) and more advanced disease. Although 40% of patients were on existing immunosuppression, 48% required initiation or switch to more potent immunotherapy. In all, 28% (14) were referred back to the originating hospitals for continued care. Although inflammation had resolved in 78% (60/77) at 12 months, persistence of inflammation and progression did not differ between the two phenotypes. Importantly, 42% demonstrated disease progression in the absence of clinically detectable inflammation.\ud \ud CONCLUSIONS: These data highlight that irrespective of OcMMP phenotype, initiation or escalation of potent immunosuppression is required at tertiary hospitals. Moreover, the conjunctival scarring progresses even when the eye remains clinically quiescent. Early referral to tertiary centres is recommended to optimise immunosuppression and limit long-term ocular damage.\ud \u
    corecore