520 research outputs found
Transport and magnetic Jc of MgB2 strands and small helical coils
The critical current densities of MgB2 monofilamentary strands with and
without SiC additions were measured at 4.2 K. Additionally, magnetic Jc at B =
1 T was measured from 4.2 K to 40 K. Various heat treatment times and
temperatures were investigated for both short samples and small helical coils.
SiC additions were seen to improve high field transport Jc at 4.2 K, but
improvements were not evident at 1 T at any temperature. Transport results were
relatively insensitive to heat treatment times and temperatures for both short
samples and coils in the 700C to 900C range.Comment: 8 text pages, 1 table, 4 fig
Drawing induced texture and the evolution of superconductive properties with heat treatment time in powder-in-tube in-situ processed MgB2 strands
Monocore powder-in-tube MgB2 strands were cold-drawn and heat-treated at 600C
and 700C for times of up to 71 hours and structure-property relationships
examined. Drawing-induced elongation of the Mg particles led, after HT, to a
textured macrostructure consisting of elongated polycrystalline MgB2 fibers
separated by elongated pores. The superconducting Tc, Jc and Fp were correlated
with the macrostructure and grain size. Grain size increased with HT time at
both 600C and 700C. Jc and hence Fp decreased monotonically but not linearly
with grain size. Overall, it was observed that at 700C, the MgB2 reaction was
more or less complete after as little as 30 min; at 600C, full reaction
completion did not occur until 71 h. into the HT. Transport, Jct(B) was
measured in a perpendicular applied field, and the magnetic critical current
densities, Jcm\bot(B) and Jcm{\phi}(B), were measured in perpendicular and
parallel (axial) applied fields, respectively. Particularly noticeable was the
premature dropoff of Jcm\bot(B) at fields well below the irreversibility field
of Jct(B). This effect is attributed to the fibrous macrostructure and its
accompanying anisotropic connectivity. Magnetic measurements with the field
directed along the strand axis yielded a critical density, Jcm\bot(B), for
current flowing transversely to the strand axis that was less than and dropped
off more rapidly than Jct(B). In the conventional magnetic measurement, the
loop currents that support the magnetization are restricted by the lower of
Jct(B) and Jcm{\phi} (B). In the present case the latter, leading to the
premature dropoff of the measured Jcm(B) compared to Jct(B) with increasing
field. This result is supported by Kramer plots of the Jcm{\phi} (B) and Jct(B)
data which lead to an irreversibility field for transverse current that is very
much less than the usual transport-measured longitudinal one, Birr,t.Comment: 41 pages, 14 figure
The critical current density of advanced internal-Mg-diffusion-processed MgB2 wires
Recent advances in MgB2 conductors are leading to a new level of performance.
Based on the use of proper powders, proper chemistry, and an architecture which
incorporates internal Mg diffusion (IMD), a dense MgB2 structure with not only
a high critical current density Jc, but also a high engineering critical
current density, Je, can be obtained. In this paper, a series of these advanced
(or second - generation, "2G") conductors has been prepared. Scanning electron
microscopy and associated energy dispersive X-ray spectroscopy were applied to
characterize the microstructures and compositions of the wires, and a dense
MgB2 layer structure was observed. The best layer Jc for our sample is 1.07x105
A/cm2 at 10 T, 4.2 K, and our best Je is seen to be 1.67x104 A/cm2 at 10 T, 4.2
K. Optimization of the transport properties of these advanced wires is
discussed in terms of B-powder choice, area fraction, and the MgB2 layer growth
mechanism.Comment: 13 pages, 3 tables, 7 figures (or 8 pp in published version
Effects of high pressure on the physical properties of MgB2
The synthesis of MgB2-based materials under high pressure gave the
possibility to suppress the evaporation of magnesium and to obtain near
theoretically dense nanograined structures with high superconducting, thermal
conducting, and mechanical characteristics: critical current densities of
1.8-1.0 \cdot 106 A/cm2 in the self field and 103 A/cm2 in a magnetic field of
8 T at 20 K, 5-3 \cdot 105 A/cm2 in self field at 30 K, the corresponding
critical fields being HC2 = 15 T at 22 K and irreversible fields Hirr =13 T at
20 K, and Hirr =3.5 T at 30 K, thermal conduction of 53+/-2 W/(m \cdot \kappa),
the Vickers hardness Hv=10.12+/-0.2 GPa under a load of 148.8 N and the
fracture toughness K1C = 7.6+/-2.0 MPa m0.5 under the same load, the Young
modulus E=213 GPa. Estimation of quenching current and AC losses allowed the
conclusion that highpressure-prepared materials are promising for application
in transformer-type fault current limiters working at 20-30 K.Comment: International Conference on Superconductivity and Magnetism 25-30
April 2010,Antalya, Turkey, in print Journal of Superconductivity and Novel
Magnetis
- …
