53 research outputs found

    Sensitivity and Linearity of Superconducting Radio-Frequency Single-Electron Transistors: Effects of Quantum Charge Fluctuations

    Full text link
    We have investigated the effects of quantum fluctuations of quasiparticles on the operation of superconducting radio-frequency single-electron transistors (RF-SETs) for large values of the quasiparticle cotunneling parameter α=8EJ/Ec\alpha=8E_{J}/E_{c}, where EJE_{J} and EcE_{c} are the Josephson and charging energies. We find that for α>1\alpha>1, subgap RF-SET operation is still feasible despite quantum fluctuations that renormalize the SET charging energy and wash out quasiparticle tunneling thresholds. Surprisingly, such RF-SETs show linearity and signal-to-noise ratio superior to those obtained when quantum fluctuations are weak, while still demonstrating excellent charge sensitivity.Comment: Submitted to Phys. Rev. Let

    Iterative solutions to the steady state density matrix for optomechanical systems

    Get PDF
    We present a sparse matrix permutation from graph theory that gives stable incomplete Lower-Upper (LU) preconditioners necessary for iterative solutions to the steady state density matrix for quantum optomechanical systems. This reordering is efficient, adding little overhead to the computation, and results in a marked reduction in both memory and runtime requirements compared to other solution methods, with performance gains increasing with system size. Either of these benchmarks can be tuned via the preconditioner accuracy and solution tolerance. This reordering optimizes the condition number of the approximate inverse, and is the only method found to be stable at large Hilbert space dimensions. This allows for steady state solutions to otherwise intractable quantum optomechanical systems.Comment: 10 pages, 5 figure

    Universal quantum fluctuations of a cavity mode driven by a Josephson junction

    Get PDF
    We analyze the quantum dynamics of a superconducting cavity coupled to a voltage biased Josephson junction. The cavity is strongly excited at resonances where the voltage energy lost by a Cooper pair traversing the circuit is a multiple of the cavity photon energy. We find that the resonances are accompanied by substantial squeezing of the quantum fluctuations of the cavity over a broad range of parameters and are able to identify regimes where the fluctuations in the system take on universal values.Comment: 5 pages, 4 figure

    Signatures of Valley Kondo Effect in Si/SiGe Quantum Dots

    Get PDF
    We report measurements consistent with the valley Kondo effect in Si/SiGe quantum dots, evidenced by peaks in the conductance versus source-drain voltage that show strong temperature dependence. The Kondo peaks show unusual behavior in a magnetic field that we interpret as arising from the valley degree of freedom. The interplay of valley and Zeeman splittings is suggested by the presence of side peaks, revealing a zero-field valley splitting between 0.28 to 0.34 meV. A zero-bias conductance peak for non-zero magnetic field, a phenomenon consistent with valley non- conservation in tunneling, is observed in two samples.Comment: 16 pages, 7 figure

    On-Chip Matching Networks for Radio-Frequency Single-Electron-Transistors

    Full text link
    In this letter, we describe operation of a radio-frequency superconducting single electron transistor (RF-SSET) with an on-chip superconducting LC matching network consisting of a spiral inductor L and its capacitance to ground. The superconducting network has a lower parasitic capacitance and gives a better matching for the RF-SSET than does a commercial chip inductor. Moreover, the superconducting network has negligibly low dissipation, leading to sensitive response to changes in the RF-SSET impedance. The charge sensitivity 2.4*10^-6 e/(Hz)^1/2 in the sub-gap region and energy sensitivity of 1.9 hbar indicate that the RF-SSET is operating in the vicinity of the shot noise limit.Comment: 3 pages, 3 figures, REVTeX 4. To appear in Appl. Phys. Let

    Si/SiGe quantum dot with superconducting single-electron transistor charge sensor

    Full text link
    We report a robust process for fabrication of surface-gated Si/SiGe quantum dots (QDs) with an integrated superconducting single-electron transistor (S-SET) charge sensor. A combination of a deep mesa etch and AlOx backfill is used to reduce gate leakage. After the leakage current is suppressed, Coulomb oscillations of the QD and the current-voltage characteristics of the S-SET are observed at a temperature of 0.3 K. Coupling of the S-SET to the QD is confirmed by using the S-SET to perform sensing of the QD charge state.Comment: 4 pages, 3 figure

    Analogue Hawking Radiation in a dc-SQUID Array Transmission Line

    Get PDF
    We propose the use of a superconducting transmission line formed from an array of dc-SQUID’s for investigating analogue Hawking radiation. Biasing the array with a space-time varying flux modifies the propagation velocity of the transmission line, leading to an effective metric with an horizon. Being a fundamentally quantum mechanical device, this setup allows for investigations of quantum effects such as back-reaction and analogue space-time fluctuations on the Hawking process

    Charge Transport Processes in a Superconducting Single-Electron Transistor Coupled to a Microstrip Transmission Line

    Full text link
    We have investigated charge transport processes in a superconducting single-electron transistor (S-SET) fabricated in close proximity to a two-dimensional electron gas (2DEG) in a GaAs/AlGaAs heterostructure. The macroscopic bonding pads of the S-SET along with the 2DEG form a microstrip transmission line. We observe a variety of current-carrying cycles in the S-SET which we attribute to simultaneous tunneling of Cooper pairs and emission of photons into the microstrip. We find good agreement between these experimental results and simulations including both photon emission and photon-assisted tunneling due to the electromagnetic environment.Comment: 4 pages, 4 figures, REVTeX

    Hall Conductivity near the z=2 Superconductor-Insulator Transition in 2D

    Full text link
    We analyze here the behavior of the Hall conductivity σxy\sigma_{xy} near a z=2z=2 insulator-superconductor quantum critical point in a perpendicular magnetic field. We show that the form of the conductivity is sensitive to the presence of dissipation η\eta, and depends non-monotonically on HH once η\eta is weak enough. σxy\sigma_{xy} passes through a maximum at H∼ηTH \sim \eta T in the quantum critical regime, suggesting that the limits H→0H \to 0 and η→0\eta \to 0 do not commute.Comment: 4 pages, 1 .eps figure, to appear in Phys. Rev.
    • …
    corecore