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Iterative solutions to the steady state density matrix for optomechanical systems

P. D. Nation,1, ∗ J. R. Johansson,2 M. P. Blencowe,3 and A. J. Rimberg3

1Department of Physics, Korea University, Seoul 136-713, Korea
2iTHES Research Group, RIKEN, Saitama 351-0198, Japan

3Department of Physics and Astronomy, Dartmouth College, New Hampshire 03755, USA
(Dated: November 18, 2014)

We present a sparse matrix permutation from graph theory that gives stable incomplete Lower-
Upper (LU) preconditioners necessary for iterative solutions to the steady state density matrix
for quantum optomechanical systems. This reordering is efficient, adding little overhead to the
computation, and results in a marked reduction in both memory and runtime requirements compared
to other solution methods, with performance gains increasing with system size. Either of these
benchmarks can be tuned via the preconditioner accuracy and solution tolerance. This reordering
optimizes the condition number of the approximate inverse, and is the only method found to be stable
at large Hilbert space dimensions. This allows for steady state solutions to otherwise intractable
quantum optomechanical systems.

PACS numbers: 42.50.Ct, 02.70.-c, 02.10.Ox

I. INTRODUCTION

Recently, there has been great interest in generating
nonclassical mechanical steady states of optomechanical
systems in the single-photon strong coupling regime [1–
10], where the standard linearized radiation-pressure ap-
proximation breaks down, signifying the ability to gen-
erate non-Gaussian steady states of self-oscillating me-
chanical motion [11, 12]. Proposed experimental setups
suggest that this regime is now within reach [13, 14],
opening up the possibility of observing persistent quan-
tum states of a mechanical oscillator.
The quantum dynamics of an optomechanical system

driven by a classical monochromatic pump is given by
the Hamiltonian

Ĥ

~
= −∆â†â+ωmb̂†b̂+ g0(b̂+ b̂†)â†â+E

(

â+ â†
)

, (1)

where â, â† and b̂, b̂† are annihilation and creation op-
erators for the cavity mode and mechanical resonator,
respectively. Here, we have gone into a frame rotating at
the pump frequency ωp, while ωc and ωm are the fre-
quency of the cavity and mechanical oscillator modes
(ωc ≫ ωm), respectively. The detuning between pump
and cavity frequencies is ∆ = (ωp − ωc), while the vac-
uum radiation pressure coupling strength is denoted by
g0, and E is the pump amplitude. We assume that the
cavity mode is coupled to the vacuum, with coupling con-
stant κ, and that the mechanical oscillator is interacting
with a possibly nonzero temperature thermal bath with
coupling strength Γm = ωm/Qm, where Qm is the me-
chanical quality factor.
At present, an analytical description of the steady state

response of optomechanics is restricted to the linearized

∗ pnation@korea.ac.kr

regime and the case of single limit-cycle mechanical oscil-
lations with g0/κ . 1 [9, 15]. In contrast, the more gen-
eral case of multiple limit-cycles and single-photon strong
coupling, where the cavity frequency shift per phonon is
larger than the cavity line width, g0/κ & 1, and a sin-
gle single photon displaces the mechanical oscillator by
more than its zero-point amplitude g0/ωm & 1 [2, 5, 11],
has only been explored numerically [7, 8]. Importantly,
the most nonclassical mechanical states, as measured by
negativity of the Wigner function, are known to occur in
the presence of multiple limit-cycles [8], thus making nu-
merical analysis of steady state optomechanical systems
a critical tool in this regime.

Ultimately, the simulation of quantum mechanical sys-
tems on classical computers is limited by the exponential
growth of both memory and runtime of classical meth-
ods as the size of the underlying truncated Hilbert space
H increases [16, 17], i.e. increasing average photon and
phonon occupation number in the steady state. How-
ever, using a sparse matrix representation for quantum
operators, the dimensionality of the underlying Hilbert
space is currently not the limiting factor in determining
the steady state solution for a large quantum system.
Rather, it is difficulties brought about by the form of the
Liouvillian super operator, describing the quantum dy-
namics of the optomechanical system interacting with its
environment, that are responsible for this limitation. In
particular, it is the lack of Hermicity and poor condition-
ing that lead to large runtime and memory consumption
when using sparse solution methods. Comprising two
coupled, bosonic oscillator modes, optomechanical sys-
tems possess a naturally large Hilbert space, and sim-
ulations have been restricted to the weak driving limit,
and/or that of a heavily damped cavity mode where the
average cavity photon number is small.

For large-scale optomechanical systems where, for ex-
ample, both the cavity and mechanical oscillator have
high quality factors, it is commonly necessary to use it-
erative solvers [18] that do not perform a lower-upper
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(LU) factorization of the system Liouvillian. Instead, this
class of solvers uses only matrix-vector multiplication to
iteratively converge to an approximate solution vector,
and thus are not as memory intensive as direct factor-
ization. For poorly conditioned systems, incomplete LU
(iLU) preconditioners are often used to improve the oth-
erwise slow convergence rate [19]. In general, the condi-
tion number grows with the size of the matrix [20], and
therefore preconditioning is required when solving large
ill-conditioned sparse matrices. When properly precon-
ditioned, these iterative methods converge rapidly, and
can even outperform direct solution methods over a wide
range of system sizes. Therefore, using iterative solvers
with iLU preconditioning is an important tool for finding
the steady state solution to a variety of open quantum
systems. Time-dependent methods as applied, for exam-
ple, in Ref. 9 allow for larger system sizes, but are only
applicable to the special case of single mechanical limit-
cycles; stochastic switching between multiple limit-cycles
restricts the effectiveness of these techniques.

While the generation of robust iLU preconditioners in
the case of an Hermitian matrix is now well established,
the existence and stability of preconditioners for non-
symmetric matrices is understood to a lesser extent [19].
In the non-symmetric case, iLU preconditioners typically
fail due to a lack of diagonal dominance, zeros along the
diagonal, and inaccuracies in the approximate inverse due
to the dropping of small nonzero elements [21]. Moreover,
even if a preconditioner is found, its condition number
can be larger than that of the original matrix and hence
convergence is lost. However, studies have shown that
these failures may be overcome by utilizing symmetric
and/or non-symmetric reorderings of the matrix to max-
imize the sum of the diagonal elements, and reduce the
overall bandwidth and profile [19, 21, 22]. The majority
of these reordering strategies are developed for matrices
with symmetric structure (graphs) and therefore their ap-
plication to non-symmetric problems with differing ma-
trix structures must be evaluated on a case by case basis
(see Ref. [19] and references therein); there is no uni-
versally applicable reordering scheme for non-symmetric
matrices.

To date, the use of reordering methods and precondi-
tioning in solving steady state quantum mechanical sys-
tems has yet to be explored. Iterative methods with-
out reordering or preconditioning were used in Ref. 9,
but the results were limited to small system sizes due
to the worsening convergence rate as the size of the sys-
tem increases. Furthermore, preconditioning often fails
for moderate to large Hilbert space sizes if no reorder-
ing strategy is applied to the Liouvillian. As precondi-
tioned iterative methods are the only means for solving
very large-scale linear systems of equations [18], finding
an appropriate matrix permutation scheme for success-
ful preconditioning is critical to enabling quantum sim-
ulations of steady state behavior in systems with large
Hilbert space dimension.

Here we show that it is possible to construct robust iLU

preconditioners for optomechanical systems by applying
the Reverse Cuthill-Mckee (RCM) permutation method
[23], originally developed for graphs from finite-element
analysis, to an appropriately symmetrized matrix repre-
sentation of the system Liouvillian. This permutation
reduces both the bandwidth and profile of the Liouvil-
lian super operator, resulting in a pronounced reduction
in memory consumption. In addition, this reordering in-
creases the stability of the iLU factors by decreasing the
condition number of the approximate inverse [19, 21, 24].
This stability in turn allows iterative solvers to converge
markedly faster than other steady state solution meth-
ods, even when converging to machine precision. Alter-
native matrix permutation methods are found to give un-
stable iLU factorizations, and RCM reordering is the only
known method that is stable over the entire range of sys-
tem parameters. Trade-offs between memory utilization
and runtime can be selectively tuned via the appropriate
choice of preconditioning parameters and solution toler-
ance. The relative benefit from using this method in-
creases with Hilbert space dimensionality, thus allowing
for finding the steady state solution to previously unman-
ageable high-dimensional optomechanical systems.
This paper is organized as follows. In Sec. II we discuss

solution methods for the steady state density matrix of
an arbitrary Liouvillian super operator represented by a
sparse matrix, and show how one is naturally lead to the
use of preconditioned iterative methods for large quan-
tum systems. Section III details the reordering strategy
used in the case of an optomechanical system, and how
this method improves the factorization properties of the
Liouvillian. In Sec. IV we show the benefit of this re-
ordering with respect to both memory consumption and
runtime, as well as the robustness under parameter vari-
ations, via numerical simulations. In addition, we ap-
ply this method to a superconducting optomechanical
realization [13] and show that persistent nonclassical me-
chanical states exist for experimentally achievable device
parameters. Finally, Sec. V ends with a discussion of the
results, and the application of these methods to other
open quantum systems.

II. STEADY STATE SOLUTION METHODS

For open quantum systems with decay rates larger
than the corresponding excitation rates, the system ap-
proaches the steady state density matrix ρ̂ss as t → ∞
satisfying the equation

dρ̂ss
dt

= L [ρ̂ss] = 0, (2)

where L is the Liouvillian super operator, here assumed
to be in Lindblad form

L[ρ̂] =− i[Ĥ, ρ̂] + κD [â, ρ̂] (3)

+ Γm(1 + nth)D[b̂, ρ̂] + ΓmnthD[b̂†, ρ̂],
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where the dissipative terms are given by D[Ô, ρ̂] =
1
2
[2Ôρ̂Ô† − ρ̂Ô†Ô− Ô†Ôρ̂], and nth = [exp(~ωm/kBT )−

1]−1 is the average occupation number of the mechanical
oscillator’s thermal environment at temperature T .
If the system Hamiltonian and collapse operators are

time-independent, then Eq. (2) can be cast as an eigen-
value equation:

L~ρss = 0~ρss, (4)

where ~ρss is the dense vector formed by vectorization (col-
umn stacking) of ρ̂ss, and L is the sparse matrix repre-
sentation of the Liouvillian in a chosen basis. In what
follows, we will assume a Fock state basis representation
for all operators.
Equation (4) can be solved iteratively as a sparse eigen-

value problem [25] using, for example, ARPACK [26]
or an inverse-power method [27] employing a shifted-
inverse technique to solve the related system of equations
(L − σI), where I is the identity matrix and σ is the re-
quested eigenvalue which is now the dominant eigenvalue
of the system [28]. Unlike Hermitian matrices, where
the eigenvalue spectrum is stable against perturbations
[27], the eigenvalues of non-symmetric matrices can be
arbitrarily ill-conditioned [29], and the associated loss of
accuracy can give rise to considerable errors in the com-
puted eigenvalues. This may be overcome, in part, via
eigenvalue balancing [30].
Alternatively, it is possible to find a direct (i.e non-

iterative) solution to ~ρss via sparse LU decomposition [20]
by making use of the unit trace property of the density
matrix to write

L̃~ρss = [L+ wT ] ~ρss =







w
0
...






; T ~ρss =







Trρ̂ss
0
...






,

(5)
where w is an arbitrary weighting factor and T is a ma-
trix with ones along the upper row in the columns corre-
sponding to the locations of the diagonal elements in ~ρss.
Importantly, T always has a nonzero element in the final
column. Unlike iterative methods, the condition number
has no effect on direct factorization, making this method
attractive for finding steady state solutions to open quan-
tum systems. Note that the restriction Trρ̂ = 1 is already
included in the Liouvillian operator L, and its matrix rep-
resentationL. Here, this constraint is used to simply add
a constant vector to both sides of Eq. (4).
When performing the LU factorization of a sparse ma-

trix, new nonzero elements arise in the L and U factors;
the sparse structure of L + U is not the same as L̃ [20].
This fill-in, must be minimized in order to reduce both
the memory requirements for storing the LU factors and
the runtime of factorization, both of which scale with the
number of nonzero matrix elements NNZ [20]. The fill-in
is sensitive to the order in which the rows and columns
of a sparse matrix are operated on, and in particular, to
the matrix bandwidth size and profile [23]. For a non-
symmetric sparse matrix A = {aij}, one can define the

upper and lower bandwidths, ‘ub’ and ‘lb’ respectively,
to be

ub = max
aij 6=0

(j− i); lb = max
aij 6=0

(i− j). (6)

The total bandwidth B is then the sum B = ub+ lb+ 1,
where the one takes into account the main diagonal [18].
Likewise, we define the upper profile up and lower profile
lp as

up =
∑

i

max
aij 6=0

(j− i); lp =
∑

j

max
aij 6=0

(i− j), (7)

such that the total profile is P = up + lp. Finding a
permutation of rows and columns of L̃ that simultane-
ously reduces both the bandwidth and the profile will be
the goal of our reordering strategy. Iterative eigenvalue
algorithms also use LU factorization, and the buildup of
fill-in likewise affects these methods.
Unfortunately, direct LU decomposition scales poorly

with matrix size in terms of both runtime and memory re-
quirements, even when reordering methods are employed.
Therefore, for sparse matrices of considerable size, itera-
tive methods are the only available method [19], with the
most common choice being iterative Krylov solvers [18].
While iterative methods require less memory and fewer
numerical operations than direct methods, these meth-
ods often require preconditioning to achieve a reasonable
convergence rate [19]. The goal of preconditioning is to
convert the original system of equations, Eq. (5), into a
modified linear system

M
−1

L̃~ρss = M
−1







w
0
...






, (8)

where M is the preconditoner. Convergence is improved
provided that the condition number of M−1

L̃ is signif-
icantly lower than that of L̃ itself. The best precondi-
tioner is obviously M = L̃, however this is equivalent
to solving the original system of equations. Instead, it is
possible to efficiently solve for an approximation of the
inverse M ≈ L̃. The application of a suitable precon-
ditioner should make the modified linear system Eq. (8)
easy to solve, and the preconditioner itself should be sim-
ple to build and apply as one or more matrix-vector prod-
ucts are required for each iteration. Moreover, the con-
dition number of M should not be so large as to affect
convergence.
The iLU class of preconditoners are constructed from

an incomplete (approximate) LU factorization to the

modified Liouvillian L̃ by discarding fill-in elements
based on a designated dropping strategy. The method
used here is an incomplete LU factorization with dual-
threshold and pivoting (iLUTP) [18], where a drop tol-
erance d and allowed fill-in p are specified such that all
fill-in smaller than d times the infinity-norm of a row are
dropped, and at most only p · NNZ(L̃) fill-in elements
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FIG. 1. (Color online) (a) Sparse matrix structure for the modified Liouvillian L̃ of an optomechanical system with Nc = 4 and
Nm = 8 along with the matrix bandwidth B and profile P . Here it is assumed that the mechanical oscillator is in a nonzero
thermal environment. The elements corresponding to matrix T (red), here enlarged for visibility, responsible for the large total

bandwidth, are along the upper row. (b) RCM reordering L̃RCM, where the permuted matrix has a total bandwidth ∼ 5 times

lower than the naturally ordered matrix, and a profile reduction of ∼ 2.5. (c) Non-symmetric COLAMD ordering of L̃. Only

the structure of L̃ is required for these reorderings. The number of nonzero elements is NNZ(L̃) = 8957.

are allowed. Note that these parameters are not indepen-
dent. In the limit where d = 0, the iLU preconditioner
returns the complete LU factorization, and the fill-in for
the direct factorization can be viewed as an upper-bound
on the size of the preconditioner. The condition number
of M can vary as a function of the drop tolerance, and
therefore decreasing d does not necessarily improve the
convergence rate [21]. Finding the best combination of
parameters is a trial and error process, thus preventing
the use of iLU factorization as a “black box” solver.

III. REORDERING STRATEGY

Finding the minimal bandwidth of a matrix is an NP-
complete problem [31], and therefore several heuristics
have been developed that attempt to minimize the band-
width while remaining computationally efficient. One
such technique is to permute the rows and columns of
a symmetric matrix based on the Cuthill-McKee (CM)
ordering [32]. Taking the structure of a symmetric sparse
matrix as the adjacency matrix of a graph, CM ordering
does a breadth-first search of the graph starting with a
node (row) of lowest degree, where the degree of the ith

node is defined to be the number of nonzero elements
in the ith matrix row, and visiting neighboring nodes in
each level-set in order from lowest to highest degree. This
is repeated for each connected component of the graph.
CM ordering also reduces the profile of the matrix, and
it was noticed that reversing the CM order, the RCM
ordering, gives a superior profile reduction while leaving
the bandwidth unchanged [23]. Since RCM operates on
the structure of a matrix, only the locations of nonzero
matrix elements, and not their numerical values, are used
in this reordering. In the Fock basis, the effect of RCM

reordering is to permute the basis vectors such that the
Fock states are no longer in ascending order. As the Li-
ouvillian operator is itself non-symmetric, we calculate

the RCM ordering of the symmetrized form L̃+ L̃
T
and

apply the resulting row and column ordering to L̃ to ob-
tain L̃RCM [33].

In Fig. 1 we demonstrate RCM reordering on an op-
tomechanical system where the mechanical resonator is
coupled to a nonzero thermal bath. There is an ambi-
guity when building the sparse matrix representation of
the Liouvillian since the tensor product, and therefore
matrix structure, depends on the ordering of the opera-
tors involved. For concreteness we take â ≡ â ⊗ Ib and
b̂ ≡ Ia ⊗ b̂, although the choice of operator ordering does
not affect the results presented here. From Fig. 1a we
see that imposing the trace condition with the matrix T

gives an upper bandwidth that is equal to the square of
the dimensionality of the optomechanical Hilbert space,
dim H = NcNm, where Nc and Nm are the number of
cavity and resonator states, respectively, in the truncated
Hilbert space. Therefore, the total bandwidth must sat-
isfy B(L̃) > (NcNm)2, suggesting that the fill-in for the
LU factors rises rapidly with system size. Arising from
the use of the trace matrix T , and not the form of the
Liouvillian, this bandwidth scaling holds for any system
Hamiltonian. Applying RCM reordering to L̃ (Fig. 1b)
significantly reduces both the bandwidth and profile of
the original matrix.

As the reduction of fill-in is a well known problem, we
are also interested in comparing RCM reordering of L̃
against the best general purpose fill-in reducing permuta-
tion for non-symmetric sparse matrices, the Column Ap-
proximate Minimum Degree (COLAMD) ordering [34].
COLAMD is the default ordering in the SuperLU library
[35] used here, as well as in commercial software such
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FIG. 2. (a) Log-plot of the bandwidth reduction factor after
RCM reordering for an optomechanical system with mechan-
ical oscillator coupled to a nonzero thermal environment for
a varying number of cavity and mechanical resonator states,
Nc and Nm respectively. (b) Log-plot of the corresponding
profile reduction factor.

as Matlab [36]. The application of this non-symmetric
(column only) reordering to the modified Liouvillian is
presented in Fig. 1c.

RCM reordering of L̃ + L̃
T

overestimates the graph
structure of L̃, and there is little a priori information
from which to judge whether this reordering strategy will
be successful when the structure of the Liouvillian oper-
ator is varied. Structural changes can occur when set-
ting to zero numerical system parameters in the Hamil-
tonian (1) or collapse operators in Eq. (3), as well as
when the number of Fock states of the cavity Nc and/or
mechanical resonator Nm are altered. Leaving the dis-
cussion of numerical coefficients to Sec. IV, in Fig. 2
we plot the total bandwidth and profile reduction fac-
tors, B(L̃)/B(L̃RCM) and P (L̃)/P (L̃RCM), respectively,
as the number of optical cavity and mechanical resonator
states is varied. Here it is seen that the RCM method
in general reduces both the bandwidth and the profile
of L̃, with the benefits of reordering increasing with the
state space dimensionality. The bandwidth and profile
of L̃RCM are not only lower than L̃, but also less than
that of L itself. For some Hilbert space dimensions,
RCM reordering does not do as well as expected due
to the over estimated graph structure. In particular,
the profile of the reordered matrix can be larger than
the original. However, the RCM ordering always gives
a markedly lower bandwidth than the naturally ordered
L̃. For even the largest Hilbert space in Fig. 2, with
NNZ(L̃) ∼ 7× 108, RCM reordering takes less than one
minute on a 2.3 GHz CPU. As this is a fraction of the
total steady state computation time, one can efficiently
examine the bandwidth and profile reduction of RCM
ordering before performing factorization.

IV. NUMERICAL SIMULATIONS

Prior to exploring the use of RCM and COLAMD re-
ordering in iterative solutions, it is instructive to inves-
tigate the effect of these permutations, together with
the natural matrix ordering, in the direct LU decom-
position of L̃. In Fig. 3 we present the fill-factor
[NNZ(L) + NNZ(U)]/NNZ(L̃) for the direct LU decom-
position of an optomechanical system with parameters
similar to those for a superconducting circuit proposal
that realizes the single-photon strong coupling regime,
Ref. [13]. Simulations are performed in QuTiP [37, 38]
using the SuperLU solver from SciPy [39]. Here, as in
all other simulations presented in this work, we set the
weighting factor w in Eq. (5) to be the average of the
diagonal elements in L. This guarantees that the matrix
elements corresponding to T are not dropped during iLU
factorization. We see that in the naturally ordered mod-
ified Liouvillian L̃, the fill-in grows with a sharp linear
dependence on the size of the underlying Hilbert space for
the quadratically increasing bandwidth. Applying either
COLAMD or RCM reordering reduces the rate of growth,
although the fill-in can still be three orders of magni-
tude or more greater than the original Liouvillian. For
a given Nc, RCM reordering outperforms COLAMD up
until a given number of oscillator states, where the CO-
LAMD fill-in rate becomes sub-linear. As Nc increases,
this crossover value for Nm rises, and RCM ordering pro-
duces a lower fill-in than COLAMD over most of the com-
putationally tractable Hilbert space dimensions. As the
number of cavity states increases, the fill-in produced us-
ing COLAMD approaches that of the naturally ordered
matrix, making the use of RCM essential in this regime.

FIG. 3. (Color online) Fill-factors for the direct LU decompo-

sition of the modified Liouvillian L̃ using natural (grey), RCM
(red) and COLAMD (blue) matrix ordering as a function of
Hilbert space dimensionality. Here, the system parameters
(in units of ωm) are: κ = 0.05, ∆ = −κ, g0 = 3κ, E = 0.25,
Qm = 104, and nth = 31.
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FIG. 4. (Color online) (a) Fill-factors as a function of detuning for direct LU factorization using RCM (brown) or COLAMD

(grey) reordering, along with fill-factors for iLU preconditioners based on L̃RCM at nth = 0 (blue), nth = 10−15 (green), and

nth = 3 (red). Those based on the COLAMD ordering of L̃ at nth = 0 (yellow) and nth = 3 (purple) are also presented.
(b) Number of iterations needed to reach machine precision for the iLU preconditioners constructed in (a). Only those points
where the solution converged within 1000 iterations are displayed. (c) Log-plot of the estimated condition number ||M~e||∞ for
the iLU preconditioners given in (a). (d) Computational speedup of iterative solvers as measured against the runtime of direct
LU factorization using COLAMD reordering. Only those points where convergence was reached are displayed. For (a-d), the
number of cavity and mechanical oscillator states is Nc = 4 and Nm = 200, while the system parameters (in units of ωm) are:,
κ = 0.2, g0 = 2.5κ, Qm = 104, E = 0.1. The iLU drop tolerance and allowed fill-in are d = 10−4 and p = 100, respectively.
(e-h) Results of iterative simulations for the system parameters from Ref. [13], and given in Fig. 3, for Nc = 10 and Nm = 50.
Here, the iLUTP parameters are set to d = 5 · 10−5 and p = 300. Only the direct LU (brown) and iterative (red) RCM results
for nth = 31, along with the corresponding COLAMD direct (grey) and iterative (purple) simulations are presented .

Turning to iterative simulations, we are interested in
not only how matrix reordering affects these calculations,
but also in how robust these methods are with respect
to variations in system parameters that affect the un-
derlying structure of L̃. In particular, we focus on the
detuning ∆ and mechanical thermal occupation number,
characterized by nth, both which are commonly set to
zero, and thus eliminating some elements in the Liouvil-
lian. While it is customary to allow some error in the
solution of iterative methods to aid in convergence, in
order to rigorously test the performance gains of the it-
erative techniques presented here, we will investigate the
memory and runtime requirements when converging to
machine precession; the iterative answer is numerically
identical to the solution vector found via direct LU de-
composition. This can be viewed as a worst-case scenario
for iterative methods as it requires a high-precision, well
conditionedM, and possibly a large number of iterations
to reach this strict tolerance. A convenient estimate for
the condition number of the approximate inverse is given
by ||M~e||∞, where ~e = (1, 1, . . . )T [21] and || · ||∞ is
the infinity-norm. Although this measure gives only a
lower bound on ||M||∞, as we will show, it is an useful
benchmark for the stability of M. Having constructed
an iLU preconditioner for a given drop tolerance d and
allowed fill-in p, we perform preconditioned iterations us-
ing the Restarted Generalized Minimum Residual (GM-
RES) solver [40]. The cost of each iteration grows as

O(n2), where n is the number of iterations, and there-
fore we restart the algorithm after 10 steps. Increas-
ing the number of iterations can improve convergence
at the expense of memory usage. Other methods suit-
able for non-symmetric matrices, such as the stabilized
bi-conjugate gradient (Bi-CGSTAB) [41] and Loose GM-
RES (LGMRES) [42] methods, were also investigated,
but were found to have inferior convergence properties.
Finally, as sparse matrix-vector multiplication is limited
by memory bandwidth [43], we run all simulations in a
serial, rather than parallel, fashion with the total compu-
tation time calculated from the average of three simula-
tions. This guarantees that memory bottlenecks do not
effect the performance calculations, but is otherwise not
necessary when using these techniques. Indeed, the sav-
ings in memory consumption that iterative solvers offer,
opens up the possibility for running multiple simulations
in parallel.

In Fig. 4(a-d), we plot the results of iterative simu-
lations of the optomechanical system from Ref. [8] with
Nc = 4 and Nm = 200 using both RCM and COLAMD
reordering of L̃ as a function of detuning. In addition,
we consider oscillator thermal environments at both zero
and nonzero (nth = 3) temperatures, the former being of
theoretical interest. Here, the iLUTP drop tolerance and
allowed fill-in are set to d = 10−4 and p = 100, respec-
tively. At this drop tolerance, in Fig. 4(a) we see that the
fill-in for the iLU factorization is approximately a factor
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of five lower than the direct factorization using COLAMD
ordering for preconditioners based on either RCM or CO-
LAMD ordering, averaging 53 and 39, respectively for the
nonzero thermal environment. Fill-in values at zero tem-
perature are slightly higher. Although COLAMD gives
lower fill-in, as seen in Fig. 4(b), only RCM reordering
at nonzero temperatures converges to machine precision
within 1000 iterations at all detunings. RCM ordering at
zero temperature completely fails, while COLAMDworks
only at a select few values for either zero or non-zero en-
vironments. For those points that do not converge, the
norm of the residual calculated from the approximate so-
lution averaged∼ 10−2 instead of the requested ≤ 10−15.
This behavior can be understood by looking at the esti-
mated condition number ofM, Fig. 4(c), where it is seen
that RCM reordering at nonzero temperature gives the
lowest values, while this same reordering at zero tempera-
ture gives condition number estimates up to six orders of
magnitude larger; the RCM iLU factors at zero temper-
ature are too ill-conditioned to reach convergence. For
COLAMD reordering, the successful iterations occur at
detunings where there is a reduction in the condition es-
timate, and therefore an increase in the stability of the
preconditioner. However, even for COLAMD, an oscilla-
tor environment at nth = 0 gives rise to iLU factors that
are very poorly conditioned.

The change in matrix structure resulting from assum-
ing nth = 0 makes the resulting Liouvillian operator less
symmetric than it otherwise would be if a nonzero os-

cillator temperature were used; the structure of L̃+ L̃
T

is a poor representation of L̃ itself. This makes it diffi-
cult for permutations, such as RCM, that assume a sym-
metric structure to effectively reorder the matrix. While
it is possible to overcome this limitation using a small
nonzero value for nth, to verify that it is the structure
of L̃ that is responsible for this poor stability, we re-
peat our simulations using nth = 10−15. This value is
specifically chosen such that the structure of L̃ includes
these thermal matrix elements, yet these terms are be-
low the requested iLU drop tolerance (d = 10−4) and
are not present in the preconditioner. Moreover, this
occupation number is so low as to not affect the final
numerical answer; the calculated density matrix is nu-
merically identical to the nth = 0 solution. As seen
in Fig. 4(c), this modification greatly increases the sta-
bility of preconditioning and convergence is once again
achieved at all detunings. As COLAMD is not sensi-
tive to the same structural properties of L̃ as is RCM,
this adjustment has no effect on COLAMD reordering.
The superior conditioning of iLU factors generated by
RCM presented here, versus those using COLAMD, pre-
sented here is in line with previous studies on symmetric
[24] and non-symmetric sparse matrices [22] where it was
found that RCM reordering improves iLU conditioning
at the expense of a marginal increase in fill-in. Lastly,
Fig. 4(d) shows the computational speed-up of the itera-
tive solutions as measured against the runtime of direct
factorization using COLAMD. This measure is affected

by both the iLU fill-in for creating the preconditioner, as
well as the condition number of M that determines the
number of required iterations. It is seen that, in addition
to the factor of five reduction in fill-in, the RCM iterative
solutions are over twice as fast when compared to direct
LU methods.

The number of cavity states (Nc = 4) considered in
the previous simulations is valid only in the limit of a
low-quality factor cavity or weakly driven system. To
examine the use of iterative methods in the high-quality
cavity scenario, we repeat our simulations with the pa-
rameters given in Fig. 3 for Nc = 10. As the direct
LU fill-in is larger than in our previous simulations (see
Fig. 3) we are limited to Nm = 50 states for the me-
chanical oscillator. The results when using an ILU drop
tolerance d = 5 · 10−5 and fill-in limit of p = 300 are
presented in Fig. 4(e-h). With a Hilbert space size less
than half that of our previous example, the improvement
in the conditioning of L̃ allows for both RCM and CO-
LAMD ordering to converge over the entire range of de-
tunings, with average fill-in levels ∼ 4.3 and ∼ 3 times
less than LU factorization using COLAMD, respectively.
Likewise, the condition estimates for M in Fig. 4(g) are
three-orders of magnitude lower than the lowest values
presented in Fig. 4(c). However, the poor performance
of COLAMD in reducing fill-in at large Nc allows iter-
ative solutions using RCM to be twice as fast as those
using COLAMD, and over four times faster than direct
LU solutions. By increasing the number of states for
the mechanical oscillator, we have verified that precondi-
tioners based on COLAMD reordering become unstable,
while those using RCM still lead to convergence.

Our motivation in developing these iterative numerical
techniques is to investigate the existence of nonclassical
steady states of mechanical motion in the single-photon
strong-coupling regime where the presence of multiple
limit-cycles prohibits time-dependent methods, and the
dimensionality of the system Hilbert space is larger than
what can be directly factored using typical computa-
tional resources. In particular, we wish to verify the exis-
tence of such states using experimentally feasible param-
eters for the superconducting cavity-Cooper pair transis-
tor (c-CPT) scheme from Ref. [13], which is predicted to
be well within the single-photon strong-coupling regime,
g20/κωm ∼ 3. However, for a realizable oscillator fre-
quency of ωm = 2π× 10MHz, the average resonator bath
occupation number is nth ∼ 20 at 10mK, and we must
find parameters for which nonclassical signatures such
as negativity in the oscillator Wigner function and/or
sub-Poissonian statistics of the individual oscillator limit-
cycles survive at these experimentally accessible temper-
atures.

From an earlier investigation [8] it is known that the
strongest nonclassical Wigner functions, as measured by
the proportion of negative Wigner area, occur at, or
just above, the renormalized cavity resonance frequency
ω′
c = ωc − g20/ωm, and that the survival of these fea-

tures at nonzero temperatures requires being well within
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FIG. 5. (Color online) (a) Wigner distribution for the me-
chanical oscillator density matrix at (in units of ωm): E =
0.45, κ = 0.05, ∆ = −2κ, g0 = 0.32, and nth = 20. Here,
xzp and pzp are the zero-point amplitudes of the oscillator’s
position and momentum, respectively. (b) Phonon number
distribution (grey) for the oscillator given in (a) along with
fitted coherent states for the lower (red) and upper (blue)
limit-cycles. The total Fano factor for the distribution is
also given. Simulation parameters are: Nc = 5, Nm = 160,
d = 10−4, and p = 200. Only the first 125 oscillator Fock
states are displayed for better limit-cycle visibility.

the single-photon strong-coupling regime. Given this in-
formation, as an illustrative example, we solve for the
steady-state density matrix at ∆/ωm = −2κ/ωm =
−0.1, g0/ωm = 0.32 (g20/κωm ∼ 2) using a pump power
E/ωm = 0.45 and present the results in Fig. 5.
The negativity in the Wigner function for the mechani-

cal resonator density matrix seen in Fig. 5a is a signature
that the mechanical oscillator is in a nonclassical state.
This state consists of two partially overlapping limit-
cycles, Fig. 5b, with an overall phonon probability dis-
tribution that gives a Fano factor, F = 〈(∆N̂b)

2〉/〈N̂b〉,
much larger than one, indicating super-Poissonian (F >
1) statistics. However, it is well known that negativity
in the oscillator Wigner function arrises from the sub-
Poissonian (F < 1) statistics of individual limit-cycles,
when the narrowed phonon number distribution is suffi-
ciently close to that of a mechanical Fock state [3, 7–9].
To qualitatively show that each limit-cycle still possesses
sub-Poissonian features, in Fig. 5b we fit each effective
limit-cycle with a coherent state, F = 1, of the same
mean phonon number, and normalized to the probability
of each limit-cycle. It is seen that the phonon number

distribution for each limit-cycle is narrower than that of
the corresponding fitted coherent state, in marked con-
trast to the tails of the distributions that are broadened
due to the partial merging of the two limit-cycles and ef-
fects from the oscillator thermal bath. As a steady state
of the system dynamics, this persistent quantum state
can be repeatedly measured using quantum state tomog-
raphy [44] without loss of fidelity. With the parameters
used here, an accurate simulation of the system requires
Nc = 5 and Nm = 160, which is outside the direct LU
factorization capabilities of our computational hardware,
and must be solved using iterative methods. While Fig. 5
shows the promise of the c-CPT device with respect to
the generation of nonclassical mechanical states of mo-
tion, the results presented here can likely be improved
upon with a more detailed search of parameter space.
Such a search is aided by the reduced memory footprint
of iterative methods, allowing for several simulations to
be run in parallel, thus greatly reducing the computation
time.
All of the examples presented here highlight the per-

formance of iterative methods under the strict condition
of convergence to machine precision. Under more typical
usage scenarios, where a given amount of error is allowed
in the computed density matrix, one can selectively tune
the level of fill-in in the iLU factors by varying the iLUTP
drop tolerance. Specifying an acceptable solution error,
as measured by the norm of the residual vector, it is pos-
sible to lower the iLU fill-in at the expense of an increase
in the number of iterations needed for convergence. For
an optimal drop tolerance d, it is possible to reduce the
memory requirements of factorization while maintaining
enough accuracy in the iLU factors so as to converge to
the relaxed solution tolerance in a reduced amount of
time. Therefore, it is possible to improve upon the per-
formance of the methods presented here with respect to
both memory and runtime measures. Note however that
the stability of M also depends on the drop tolerance in
a non-trivial manner, and therefore only select values for
the drop tolerance will lead to convergence.

V. CONCLUSION

We have shown that RCM reordering of the Liouvil-
lian super operator for quantum optomechanical systems
gives stable iLU preconditioners necessary for iterative
solutions to the steady state density matrix. The combi-
nation of low fill-in and condition number, allows these
iterative techniques to outperform direct solution meth-
ods in terms of both memory consumption and compu-
tation runtime. The results presented here are limited
only by the memory constraints of direct LU factoriza-
tion, and there is nothing that prohibits these relative
performance benchmarks from being an order of magni-
tude, or higher, as the dimensionality of the Hilbert space
is increased. Unlike other matrix permutation methods,
the iLU factors generated by RCM reordering are sta-
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ble over the entire parameter space, provided that one
correctly adjusts for the special case of a zero tempera-
ture oscillator environment. Although we have only ex-
amined the standard optomechanical Hamiltonian, the
benefits of RCM reordering apply equally well to vari-
ants of Eq. (1) provided that the Hamiltonian remains
time-independent. In particular, RCM reordering is well
suited for quadratic “membrane in the middle” optome-
chanical systems where the coupling term takes the form

(b̂+ b̂†)2â†â [45, 46], as well as additional anharmonic os-
cillator terms [47]. In addition, since any symmetric per-
mutation is a similarity transformation, RCM reordering
can also be applied in iterative eigenvalue solvers.
The extension of this reordering scheme to other classes

of Hamiltonians is less straightforward. While RCM re-
ordering of a symmetric matrix is guaranteed to reduce
the bandwidth and profile, or at least do no worse [23],

the need to operate on L̃+ L̃
T
rather than L̃ itself inval-

idates this assurance. For example, permuting a Jaynes-
Cummings system [48] using RCM reordering leads to an
increase in both bandwidth and profile, and a subsequent
growth in memory and runtime requirements. However,
this is not to say that matrix permutation methods can
not be employed for these systems. Indeed, for system Li-
ouvillians, like the Jaynes-Cumming model, where zeros
can occur along the main diagonal, non-symmetric re-
orderings such as maximum cardinality bipartite match-
ing methods [49], or weighted variants thereof, that per-
mute the diagonal to be zero-free must be used before
even standard reorderings such as COLAMD can be em-
ployed. An, as yet unknown, symmetric permutation
that reduces the bandwidth and profile of the resulting
matrix can then be applied [50].

Finding a successful permutation strategy for a given
system Hamiltonian can be a daunting task given the
plethora of reorderings available, the non-symmetric
structure of the Liouvillian, and the need to empirically
test each one. However, as we have shown, the stability
of the approximate inverse is the key requirement when
using iterative solvers. As such, theoretical [24], and nu-
merical [22] evidence points to permutations based on re-
versed breadth-first (such as RCM) or depth-first search
methods as possible candidates. Once found, a success-
ful permutation scheme unlocks the possibility of using
iterative solution methods, whihc appear to be the only
methods available when solving very large-scale linear
systems. Although RCM reordering itself is a serial algo-
rithm, the methods presented here are scalable to parallel
and distributed computing architectures [18, 51, 52] and,
with a quantum computer out of reach for the foreseeable
future, represent the best available solution method for
the steady state density matrix of optomechanical and
other time-independent open quantum systems.
All of the tools presented in this work can be found in

the open-source QuTiP framework [53]. In addition, the
Python scripts used for generating the results presented
here are available as ancillary files with the arXiv version
of the manuscript.
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