1,770 research outputs found
Construction et gestion matérielle des nouvelles prisons : impacts de l’implantation d’une prison sur sa commune d’accueil
Spin dynamics in hole-doped two-dimensional S=1/2 Heisenberg antiferromagnets: ^{63}Cu NQR relaxation in La_{2-x}Sr_xCuO_4 for
The effects on the correlated Cu^{2+} S = 1/2 spin dynamics in the
paramagnetic phase of La_{2-x}Sr_xCuO_4 (for ) due to the
injection of holes are studied by means of ^{63}Cu NQR spin-lattice relaxation
time T_1 measurements. The results are discussed in the framework of the
connection between T_1 and the in-plane magnetic correlation length
. It is found that at high temperatures the system remains in
the renormalized classical regime, with a spin stiffness constant
reduced by small doping to an extent larger than the one due to Zn doping. For
the effect of doping on appears to level off. The
values for derived from T_1 for K are much larger
than the ones estimated from the temperature behavior of sublattice
magnetization in the ordered phase (). It is argued that these
features are consistent with the hypothesis of formation of stripes of
microsegregated holes.Comment: 10 pages, 3 figure
A closed form for the electrostatic interaction between two rod-like charged objects
We have calculated the electrostatic interaction between two rod-like charged
objects with arbitrary orientations in three dimensions. we obtained a closed
form formula expressing the interaction energy in terms of the separation
distance between the centers of the two rod-like objects, , their lengths
(denoted by and ), and their relative orientations (indicated by
and ). When the objects have the same length (),
for particular values of separations, i.e for , two types of
minimum are appeared in the interaction energy with respect to . By
employing the closed form formula and introducing a scaled temperature , we
have also studied the thermodynamic properties of a one dimensional system of
rod-like charged objects. For different separation distances, the dependence of
the specific heat of the system to the scaled temperature has been studied. It
is found that for , the specific heat has a maximum.Comment: 10 pages, 9 figures, 1 table, Accepted by J. Phys.: Condens. Matte
Design and Experimental Characterization of a Niti-Based, High-Frequency, Centripetal Peristaltic Actuator
Development and experimental testing of a peristaltic device actuated by a single shape-memory NiTi wire are described. The actuator is designed to radially shrink a compliant silicone pipe, and must work on a sustained basis at an actuation frequency that is higher than those typical of NiTi actuators. Four rigid, aluminum-made circular sectors are sitting along the pipe circumference and provide the required NiTi wire housing. The aluminum assembly acts as geometrical amplifier of the wire contraction and as heat sink required to dissipate the thermal energy of the wire during the cooling phase. We present and discuss the full experimental investigation of the actuator performance, measured in terms of its ability to reduce the pipe diameter, at a sustained frequency of 1.5 Hz. Moreover, we investigate how the diameter contraction is affected by various design parameters as well as actuation frequencies up to 4 Hz. We manage to make the NiTi wire work at 3% in strain, cyclically providing the designed pipe wall displacement. The actuator performance is found to decay approximately linearly with actuation frequencies up to 4 Hz. Also, the interface between the wire and the aluminum parts is found to be essential in defining the functional performance of the actuator
Anelastic spectroscopy study of the spin-glass and cluster spin-glass phases of LaSrCuO
The anelastic spectra of LaSrCuO have been measured at
liquid He temperatures slightly below and above the concentration which is considered to separate the spin-glass phase from the
cluster spin-glass (CSG) phase. For all the elastic energy loss
functions show a step below the temperature of freezing into
the CSG state, similarly to what found in samples well within the CSG phase,
but with a smaller amplitude. The excess dissipation in the CSG state is
attributed to the motion of the domain walls between the clusters of
antiferromagnetically correlated spin. These results are in agreement with the
recent proposal, based on inelastic neutron scattering, of an electronic phase
separation between regions with and , at least for
Comment: 5 pages, 3 figures, submitted to Phys. Rev.
First-Principles Calculations of Hyperfine Interactions in La_2CuO_4
We present the results of first-principles cluster calculations of the
electronic structure of La_2CuO_4. Several clusters containing up to nine
copper atoms embedded in a background potential were investigated.
Spin-polarized calculations were performed both at the Hartree-Fock level and
with density functional methods with generalized gradient corrections to the
local density approximation. The distinct results for the electronic structure
obtained with these two methods are discussed. The dependence of the
electric-field gradients at the Cu and the O sites on the cluster size is
studied and the results are compared to experiments. The magnetic hyperfine
coupling parameters are carefully examined. Special attention is given to a
quantitative determination of on-site and transferred hyperfine fields. We
provide a detailed analysis that compares the hyperfine fields obtained for
various cluster sizes with results from additional calculations of spin states
with different multiplicities. From this we conclude that hyperfine couplings
are mainly transferred from nearest neighbor Cu^{2+} ions and that
contributions from further distant neighbors are marginal. The mechanisms
giving rise to transfer of spin density are worked out. Assuming conventional
values for the spin-orbit coupling, the total calculated hyperfine interaction
parameters are compared to informations from experiments.Comment: 23 pages, 9 figure
Life-cycle assessment of a waste refinery process for enzymatic treatment of municipal solid waste
A magnetization and B NMR study of MgAlB superconductors
We demonstrate for the first time the magnetic field distribution of the pure
vortex state in lightly doped MgAlB () powder
samples, by using B NMR in magnetic fields of 23.5 and 47 kOe. The
magnetic field distribution at T=5 K is Al-doping dependent, revealing a
considerable decrease of anisotropy in respect to pure MgB. This result
correlates nicely with magnetization measurements and is consistent with
-band hole driven superconductivity for MgB
- …
