110 research outputs found

    Noninvasive ¹³C-octanoic acid breath test shows delayed gastric emptying in patients with amyotrophic lateral sclerosis

    Get PDF
    Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disorder characterized by progressive loss of motor neurons. However, ALS has been recognized to also involve non-motor systems. Subclinical involvement of the autonomic system in ALS has been described. The recently developed C-13-octanoic acid breath test allows the noninvasive measurement of gastric emptying. With this new technique we investigated 18 patients with ALS and 14 healthy volunteers. None of the patients had diabetes mellitus or other disorders known to cause autonomic dysfunction. The participants received a solid standard test meal labeled with C-13-octanoic acid. Breath samples were taken at 15-min intervals for 5 h and were analyzed for (CO2)-C-13 by isotope selective nondispersive infrared spectrometry. Gastric emptying peak time (t(peak)) and emptying half time (t(1/2)) were determined. All healthy volunteers displayed normal gastric emptying with a mean emptying t(1/2) of 138 +/- 34 (range 68-172) min. Gastric emptying was delayed (t(1/2) > 160 min) in 15 of 18 patients with ALS. Emptying t(1/2) in ALS patients was 218 +/- 48 (range 126-278) min (p < 0.001). These results are compatible with autonomic involvement in patients with ALS, causing delayed gastric emptying of solids and encouraging the theory that ALS is a multisystem disease rather than a disease of the motor neurons only

    Metabolic and hormonal studies of Type 1 (insulin-dependent) diabetic patients after successful pancreas and kidney transplantation

    Get PDF
    Long-term normalization of glucose metabolism is necessary to prevent or ameliorate diabetic complications. Although pancreatic grafting is able to restore normal blood glucose and glycated haemoglobin, the degree of normalization of the deranged diabetic metabolism after pancreas transplantation is still questionable. Consequently glucose, insulin, C-peptide, glucagon, and pancreatic polypeptide responses to oral glucose and i.v. arginine were measured in 36 Type 1 (insulin-dependent) diabetic recipients of pancreas and kidney allografts and compared to ten healthy control subjects. Despite normal HbA1 (7.2±0.2%; normal <8%) glucose disposal was normal only in 44% and impaired in 56% of the graft recipients. Normalization of glucose tolerance was achieved at the expense of hyperinsulinaemia in 52% of the subjects. C-peptide and glucagon were normal, while pancreatic polypeptide was significantly higher in the graft recipients. Intravenous glucose tolerance (n=21) was normal in 67% and borderline in 23%. Biphasic insulin release was seen in patients with normal glucose tolerance. Glucose tolerance did not deteriorate up to 7 years post-transplant. In addition, stress hormone release (cortisol, growth hormone, prolactin, glucagon, catecholamines) to insulin-induced hypoglycaemia was examined in 20 graft recipients and compared to eight healthy subjects. Reduced blood glucose decline indicates insulin resistance, but glucose recovery was normal, despite markedly reduced catecholamine and glucagon release. These data demonstrate the effectiveness of pancreatic grafting in normalizing glucose metabolism, although hyperinsulinaemia and deranged counterregulatory hormone response are observed frequently

    Mode-multiplexing deep-strong light-matter coupling

    Full text link
    Dressing quantum states of matter with virtual photons can create exotic effects ranging from vacuum-field modified transport to polaritonic chemistry, and may drive strong squeezing or entanglement of light and matter modes. The established paradigm of cavity quantum electrodynamics focuses on resonant light-matter interaction to maximize the coupling strength ΩR/ωc\Omega_\mathrm{R}/\omega_\mathrm{c}, defined as the ratio of the vacuum Rabi frequency and the carrier frequency of light. Yet, the finite oscillator strength of a single electronic excitation sets a natural limit to ΩR/ωc\Omega_\mathrm{R}/\omega_\mathrm{c}. Here, we demonstrate a new regime of record-strong light-matter interaction which exploits the cooperative dipole moments of multiple, highly non-resonant magnetoplasmon modes specifically tailored by our metasurface. This multi-mode coupling creates an ultrabroadband spectrum of over 20 polaritons spanning 6 optical octaves, vacuum ground state populations exceeding 1 virtual excitation quantum for electronic and optical modes, and record coupling strengths equivalent to ΩR/ωc=3.19\Omega_\mathrm{R}/\omega_\mathrm{c}=3.19. The extreme interaction drives strongly subcycle exchange of vacuum energy between multiple bosonic modes akin to high-order nonlinearities otherwise reserved to strong-field physics, and entangles previously orthogonal electronic excitations solely via vacuum fluctuations of the common cavity mode. This offers avenues towards tailoring phase transitions by coupling otherwise non-interacting modes, merely by shaping the dielectric environment

    Differencing strategies for SLR observations at the Wettzell observatory

    No full text
    The precise estimation of geodetic parameters using single- and double-differenced SLR observations is investigated. While the differencing of observables is a standard approach for the GNSS processing, double differences of simultaneous SLR observations are practically impossible to obtain due to the SLR basic principle of observing one satellite at a time. Despite this, the availability of co-located SLR telescopes and the use of the alternative concept of quasi-simultaneity allow the forming of SLR differences under certain assumptions, thus enabling the use of these processing strategies. These differences are in principle almost free of both, satellite- and station-specific error sources, and are shown to be a valuable tool to obtain relative coordinates and range biases, and to validate local ties. Tested with the two co-located SLR telescopes at the Geodetic Observatory Wettzell (Germany) using SLR observations to GLONASS and LAGEOS, the developed differencing approach shows that it is possible to obtain single- and double-difference residuals at the millimetre level, and that it is possible to estimate parameters, such as range biases at the stations and the local baseline vector with a precision at the millimetre level and an accuracy comparable to traditional terrestrial survey methods. The presented SLR differences constitute a valuable alternative for the monitoring of the local baselines and the estimation of geodetic parameters.ISSN:0949-7714ISSN:1432-139

    Beim Rohprotein sparen?

    Full text link

    Op-Indikation im Schockraum bei Milz- oder Leberverletzung: Welche Informationen sind wichtig?

    No full text
    corecore