2,914 research outputs found

    Three-dimensional flow structure and bed morphology in large elongate meander loops with different outer bank roughness characteristics

    Get PDF
    © 2016. American Geophysical Union. All Rights Reserved. Few studies have examined the three-dimensional flow structure and bed morphology within elongate loops of large meandering channels. The present study focuses on the spatial patterns of three-dimensional flow structure and bed morphology within two elongate meander loops and examines how differences in outer bank roughness influence near-bank flow characteristics. Three-dimensional velocities were measured during two different events—a near-bankfull flow and an overbank event. Detailed data on channel bathymetry and bed form geometry were obtained during a near-bankfull event. Flow structure within the loops is characterized by strong topographic steering by the point bar, by the development of helical motion associated with flow curvature, and by acceleration of flow where bedrock is exposed along the outer bank. Near-bank velocities during the overbank event are less than those for the near-bankfull flow, highlighting the strong influence of the point bar on redistribution of mass and momentum of the flow at subbankfull stages. Multiple outer bank pools are evident within the elongate meander loop with low outer bank roughness, but are not present in the loop with high outer bank roughness, which may reflect the influence of abundant large woody debris on near-bank velocity characteristics. The positions of pools within both loops can be linked to spatial variations in planform curvature. The findings indicate that flow structure and bed morphology in these large elongate loops is similar to that in small elongate loops, but differs somewhat from flow structure and bed morphology reported for experimental elongate loops

    GRB Energetics and the GRB Hubble Diagram: Promises and Limitations

    Full text link
    We present a complete sample of 29 GRBs for which it has been possible to determine temporal breaks (or limits) from their afterglow light curves. We interpret these breaks within the framework of the uniform conical jet model, incorporating realistic estimates of the ambient density and propagating error estimates on the measured quantities. In agreement with our previous analysis of a smaller sample, the derived jet opening angles of those 16 bursts with redshifts result in a narrow clustering of geometrically-corrected gamma-ray energies about E_gamma = 1.33e51 erg; the burst-to-burst variance about this value is a factor of 2.2. Despite this rather small scatter, we demonstrate in a series of GRB Hubble diagrams, that the current sample cannot place meaningful constraints upon the fundamental parameters of the Universe. Indeed for GRBs to ever be useful in cosmographic measurements we argue the necessity of two directions. First, GRB Hubble diagrams should be based upon fundamental physical quantities such as energy, rather than empirically-derived and physically ill-understood distance indicators. Second, a more homogeneous set should be constructed by culling sub-classes from the larger sample. These sub-classes, though now first recognizable by deviant energies, ultimately must be identifiable by properties other than those directly related to energy. We identify a new sub-class of GRBs (``f-GRBs'') which appear both underluminous by factors of at least 10 and exhibit a rapid fading at early times. About 10-20% of observed long-duration bursts appear to be f-GRBs.Comment: Accepted to the Astrophysical Journal (20 May 2003). 19 pages, 3 Postscript figure

    Lyman-alpha emission galaxies at a redshift of z = 5.7 in the FORS Deep Field

    Full text link
    We present the results of a search for Lyman-alpha emission galaxies at z~ 5.7 in the FORS Deep Field. The objective of this study is to improve the faint end of the luminosity function of high-redshift Lyman-alpha emitting galaxies and to derive properties of intrinsically faint Lyman-alpha emission galaxies in the young universe. Using FORS2 at the ESO VLT and a set of special interference filters, we identified candidates for high-redshift Lyman-alpha galaxies. We then used FORS2 in spectroscopic mode to verify the identifications and to study their spectral properties. The narrow-band photometry resulted in the detection of 15 likely Lyman-alpha emission galaxies. Spectra with an adequate exposure time could be obtained for eight galaxies. In all these cases the presence of Lyman-alpha emission at z = 5.7 was confirmed spectroscopically. The line fluxes of the 15 candidates range between 3 and 16 * 10^-21 Wm^-2, which corresponds to star-formation rates not corrected for dust between 1 and 5 Msun/yr. The luminosity function derived for our photometrically identified objects extends the published luminosity functions of intrinsically brighter Lyman-alpha galaxies. With this technique the study of high-redshift Lyman-alpha emission galaxies can be extended to low intrinsic luminosities.Comment: 9 pages, 17 figures. Accepted by A&A. PDF version with higher resolution figures here: http://www.lsw.uni-heidelberg.de/users/jheidt/fdf/pubs/fdflae5_7_110406.pd

    Spectroscopic Properties of the z=4.5 Lyman-alpha Emitters

    Full text link
    We present Keck/LRIS optical spectra of 17 Lya-emitting galaxies and one Lyman break galaxy at z=4.5 discovered in the Large Area Lyman Alpha (LALA) survey. The survey has identified a sample of ~350 candidate Lya-emitting galaxies at z=4.5 in a search volume of 1.5 x 10^6 comoving Mpc^3. We targeted 25 candidates for spectroscopy; hence, the 18 confirmations presented herein suggest a selection reliability of 72%. The large equivalent widths (median W(rest)~80 A) but narrow physical widths (v < 500 km/s) of the Lya emission lines, along with the lack of accompanying high-ionization state emission lines, suggest that these galaxies are young systems powered by star formation rather than by AGN activity. Theoretical models of galaxy formation in the primordial Universe suggest that a small fraction of Lya-emitting galaxies at z=4.5 may still be nascent, metal-free objects. Indeed, we find with 90% confidence that 3 to 5 of the confirmed sources show W(rest) > 240 A, exceeding the maximum Lya equivalent width predicted for normal stellar populations. Nonetheless, we find no evidence for HeII 1640 emission in either individual or composite spectra, indicating that though these galaxies are young, they are not truly primitive, Population III objects.Comment: 12 pages, Accepted to Ap

    Spectroscopic Confirmation of Three Redshift 5.7 Lyman-alpha Emitters from the Large Area Lyman Alpha Survey

    Get PDF
    Narrow-band searches for Lyman alpha emission are an efficient way of identifying star-forming galaxies at high redshifts. We present Keck telescope spectra confirming redshifts z = 5.7 for three objects discovered in the Large Area Lyman Alpha (LALA) survey at Kitt Peak National Observatory. All three spectra show strong, narrow emission lines with the asymmetric profile that is characteristically produced in high redshift Lyman alpha emitters by preferential HI absorption in the blue wing of the line. These objects are undetected in deep Bw, V, R, and 6600A narrow-band images from the NOAO Deep Wide-Field Survey and from LALA, as expected from Lyman break and Lyman alpha forest absorption at redshift z = 5.7. All three objects show large equivalent widths (>= 150A in the rest-frame), suggesting at least one of the following: a top-heavy initial mass function, very low stellar metallicity, or the presence of an active nucleus. We consider the case for an active nucleus to be weak in all three objects due to the limited width of the Lyman alpha emission line (< 500 km/s) and the absence of any other indicator of quasar activity. The three confirmed high redshift objects were among four spectroscopically observed targets drawn from the sample of 18 candidates presented by Rhoads and Malhotra (2001). Thus, these spectra support the Lyman alpha emitter population statistics from our earlier photometric study, which imply little evolution in number density from z=5.7 to z=4.5 and provide strong evidence that the reionization redshift is greater than 5.7.Comment: Submitted to AJ, June 2002. 15 pages, AASTe

    First Results from the Large Area Lyman Alpha Survey

    Get PDF
    We report on a new survey for z=4.5 Lyman alpha sources, the Large Area Lyman Alpha (LALA) survey. Our survey achieves an unprecedented combination of volume and sensitivity by using narrow-band filters on the new 8192x8192 pixel CCD Mosaic Camera at the 4 meter Mayall telescope of Kitt Peak National Observatory. Well-detected sources with flux and equivalent width matching known high redshift Lyman alpha galaxies (i.e., observed equivalent width above 80 Angstroms and line+continuum flux between 2.6e-17 and 5.2e-17 erg/cm^2/sec in an 80 Angstrom filter) have an observed surface density corresponding to 11000 +- 700 per square degree per unit redshift at z=4.5. Spatial variation in this surface density is apparent on comparison between counts in 6561 and 6730 Angstrom filters. Early spectroscopic followup results from the Keck telescope included three sources meeting our criteria for good Lyman alpha candidates. Of these, one is confirmed as a z=4.52 source, while another remains consistent with either z=4.55 or z=0.81. We infer that 30 to 50% of our good candidates are bona fide Lyman alpha emitters, implying a net density of about 4000 Lyman alpha galaxies per square degree per unit redshift.Comment: 10 pages, 2 figures (3 .ps files), uses AASTeX 4. Submitted to The Astrophysical Journal Letter

    Constraining the Lyα escape fraction with far-infrared observations of Lyα emitters

    Get PDF
    We study the far-infrared properties of 498 Lyα emitters (LAEs) at z = 2.8, 3.1, and 4.5 in the Extended Chandra Deep Field-South, using 250, 350, and 500μm data from the Herschel Multi-tiered Extragalactic Survey and 870μm data from the LABOCA ECDFS Submillimeter Survey. None of the 126, 280, or 92 LAEs at z = 2.8, 3.1, and 4.5, respectively, are individually detected in the far-infrared data. We use stacking to probe the average emission to deeper flux limits, reaching 1σ depths of ∼0.1 to 0.4 mJy. The LAEs are also undetected at ?3σ in the stacks, although a 2.5σ signal is observed at 870μm for the z = 2.8 sources. We consider a wide range of far-infrared spectral energy distributions (SEDs), including an M82 and an Sd galaxy template, to determine upper limits on the far-infrared luminosities and far-infrared-derived star formation rates of the LAEs. These star formation rates are then combined with those inferred from the Lyα and UV emission to determine lower limits on the LAEs’ Lyα escape fraction (f esc (Lyα)). For the Sd SED template, the inferred LAEs f esc (Lyα) are ?30% (1σ) at z = 2.8, 3.1, and 4.5, which are all significantly higher than the global f esc (Lyα) at these redshifts. Thus, if the LAEs f esc (Lyα) follows the global evolution, then they have warmer far-infrared SEDs than the Sd galaxy template. The average and M82 SEDs produce lower limits on the LAE f esc (Lyα) of ∼10%–20% (1σ), all of which are slightly higher than the global evolution of f esc (Lyα), but consistent with it at the 2σ–3σ level

    Constraints on Physical Properties of z~6 Galaxies Using Cosmological Hydrodynamic Simulations

    Full text link
    We conduct a detailed comparison of broad-band spectral energy distributions of six z >= 5.5 galaxies against galaxies drawn from cosmological hydrodynamic simulations. We employ a new tool called SPOC, which constrains the physical properties of observed galaxies through a Bayesian likelihood comparison with model galaxies. For five out of six observed z>=5.5 objects, our simulated galaxies match the observations at least as well as simple star formation histories such as tau-models, with similar favored values obtained for the intrinsic physical parameters such as stellar mass and star formation rate, but with substantially smaller uncertainties. Our results are broadly insensitive to simulation choices for galactic outflows and dust reddening. Hence the existence of early galaxies as observed is broadly consistent with current hierarchical structure formation models. However, one of the six objects has photometry that is best fit by a bursty SFH unlike anything produced in our simulations, driven primarily by a high K-band flux. These findings illustrate how SPOC provides a robust tool for optimally utilizing hydrodynamic simulations (or any model that predicts galaxy SFHs) to constrain the physical properties of individual galaxies having only photometric data, as well as identify objects that challenge current models. (abridged)Comment: 22 pages, 11 figures, accepted by MNRAS. Added discussions of dust, numerical resolution; clarified conclusion

    Effects of Dust Geometry in Lyman Alpha Galaxies at z = 4.4

    Full text link
    Equivalent widths (EWs) observed in high-redshift Lyman alpha galaxies could be stronger than the EW intrinsic to the stellar population if dust is present residing in clumps in the inter-stellar medium (ISM). In this scenario, continuum photons could be extinguished while the Lyman alpha photons would be resonantly scattered by the clumps, eventually escaping the galaxy. We investigate this radiative transfer scenario with a new sample of six Lyman alpha galaxy candidates in the GOODS CDF-S, selected at z = 4.4 with ground-based narrow-band imaging obtained at CTIO. Grism spectra from the HST PEARS survey confirm that three objects are at z = 4.4, and that another object contains an active galactic nuclei (AGN). If we assume the other five (non-AGN) objects are at z = 4.4, they have rest-frame EWs from 47 -- 190 A. We present results of stellar population studies of these objects, constraining their rest-frame UV with HST and their rest-frame optical with Spitzer. Out of the four objects which we analyzed, three objects were best-fit to contain stellar populations with ages on the order of 1 Myr and stellar masses from 3 - 10 x 10^8 solar masses, with dust in the amount of A_1200 = 0.9 - 1.8 residing in a quasi-homogeneous distribution. However, one object (with a rest EW ~ 150 A) was best fit by an 800 Myr, 6.6 x 10^9 solar mass stellar population with a smaller amount of dust (A_1200 = 0.4) attenuating the continuum only. In this object, the EW was enhanced ~ 50% due to this dust. This suggests that large EW Lyman alpha galaxies are a diverse population. Preferential extinction of the continuum in a clumpy ISM deserves further investigation as a possible cause of the overabundance of large-EW objects that have been seen in narrow-band surveys in recent years.Comment: Submitted to the Astrophysical Journal. 35 pages, 7 figures and 4 table

    The nature of the Lyman-alpha emission region of FDF-4691

    Full text link
    In order to study the origin of the strong Lyman-alpha emission of high-redshift starburst galaxies we observed and modeled the emission of the z = 3.304 galaxy FDF-4691 (rest-frame EW = 103 Angstroem). The observations show that FDF-4691 is a young starburst galaxy with a (for this redshift) typical metallicity. The broad, double-peaked profile of the Lyman-alpha emission line can be explained assuming a highly turbulent emission region in the inner part of the starburst galaxy, and a surrounding extended shell of low-density neutral gas with a normal dust/gas ratio and with Galactic dust properties. The detection of the Lyman-alpha emission line is explained by the intrinsic broad Lyman-alpha emission and a low HI column density of the neutral shell. A low dust/gas ratio in the neutral shell is not needed to explain the strong Lyman-alpha line.Comment: Accepted for publication in A&A Letter
    corecore