1,106 research outputs found

    A Bayesian Inference Analysis of the X-ray Cluster Luminosity-Temperature Relation

    Get PDF
    We present a Bayesian inference analysis of the Markevitch (1998) and Allen & Fabian (1998) cooling flow corrected X-ray cluster temperature catalogs that constrains the slope and the evolution of the empirical X-ray cluster luminosity-temperature (L-T) relation. We find that for the luminosity range 10^44.5 erg s^-1 < L_bol < 10^46.5 erg s^-1 and the redshift range z < 0.5, L_bol is proportional to T^2.80(+0.15/-0.15)(1+z)^(0.91-1.12q_0)(+0.54/-1.22). We also determine the L-T relation that one should use when fitting the Press- Schechter mass function to X-ray cluster luminosity catalogs such as the Einstein Medium Sensitivity Survey (EMSS) and the Southern Serendipitous High- Redshift Archival ROSAT Catalog (Southern SHARC), for which cooling flow corrected luminosities are not determined and a universal X-ray cluster temperature of T = 6 keV is assumed. In this case, L_bol is proportional to T^2.65(+0.23/-0.20)(1+z)^(0.42-1.26q_0)(+0.75/-0.83) for the same luminosity and redshift ranges.Comment: Accepted to The Astrophysical Journal, 20 pages, LaTe

    The Fading of Supernova Remnant Cassiopeia A from 38 MHz to 16.5 GHz from 1949 to 1999 with New Observations at 1405 MHz

    Get PDF
    We report 1405 MHz measurements of the flux density of the approximately 320 year old supernova remnant Cassiopeia A, relative to the flux density of Cygnus A, made between 1995 and 1999. When compared to measurements made between 1957 and 1976, we find that the rate at which Cassiopeia A has been fading at this and nearby frequencies has changed from approximately 0.9 % yr^-1 in the 1960s to approximately 0.6 - 0.7 % yr^-1 now. Furthermore, we have collected from the literature measurements of this fading rate at lower (38 - 300 MHz) and higher (7.8 - 16.5 GHz) frequencies. We show that the fading rate has dropped by a factor of approximately 3 over the past 50 years at the lower frequencies, while remaining relatively constant at the higher frequencies, which is in agreement with the findings of others. Our findings at 1405 MHz, in conjunction with a measurement of the fading rate at the nearby frequency of 927 MHz by Vinyajkin (1997), show an intermediate behavior at intermediate frequencies. We also find that Cassiopeia A, as of approximately 1990, was fading at about the same rate, approximately 0.6 - 0.7 % yr^-1, at all of these frequencies. Future measurements are required to determine whether the fading rate will continue to decrease at the lower frequencies, or whether Cassiopeia A will now fade at a relatively constant rate at all of these frequencies

    Evidence for a Molecular Cloud Origin for Gamma-Ray Bursts: Implications for the Nature of Star Formation in the Universe

    Get PDF
    It appears that the majority of rapidly-, well-localized gamma-ray bursts with undetected, or dark, optical afterglows, or `dark bursts' for short, occur in clouds of size R > 10L_{49}^{1/2} pc and mass M > 3x10^5L_{49} M_{sun}, where L is the isotropic-equivalent peak luminosity of the optical flash. We show that clouds of this size and mass cannot be modeled as a gas that is bound by pressure equilibrium with a warm or hot phase of the interstellar medium (i.e., a diffuse cloud): Such a cloud would be unstable to gravitational collapse, resulting in the collapse and fragmentation of the cloud until a burst of star formation re-establishes pressure equilibrium within the fragments, and the fragments are bound by self-gravity (i.e., a molecular cloud). Consequently, dark bursts probably occur in molecular clouds, in which case dark bursts are probably a byproduct of this burst of star formation if the molecular cloud formed recently, and/or the result of lingering or latter generation star formation if the molecular cloud formed some time ago. We then show that if bursts occur in Galactic-like molecular clouds, the column densities of which might be universal, the number of dark bursts can be comparable to the number of bursts with detected optical afterglows: This is what is observed, which suggests that the bursts with detected optical afterglows might also occur in molecular clouds. We confirm this by modeling and constraining the distribution of column densities, measured from absorption of the X-ray afterglow, of the bursts with detected optical afterglows: We find that this distribution is consistent with the expectation for bursts that occur in molecular clouds, and is not consistent with the expectation for bursts that occur in diffuse clouds. More...Comment: Accepted to The Astrophysical Journal, 22 pages, 6 figures, LaTe

    GRB 970228 and GRB 980329 and the Nature of Their Host Galaxie

    Get PDF
    We find that the local galactic extinction towards the field of gamma-ray burst GRB970228 is AV=1.090.20+0.10A_V=1.09^{+0.10}_{-0.20}, which implies a substantial dimming and change in the spectral slope of the intrinsic GRB970228 afterglow. We measure a color (V606I814)ST=0.180.61+0.51(V_{606}-I_{814})_{ST} = -0.18^{+0.51}_{-0.61} for the extended source coincident with the afterglow. Taking into account our measurement of the extinction toward this field, this color implies that the extended source is most likely a galaxy undergoing star formation, in agreement with our earlier conclusion (\cite{CL98}). In a separate analysis, we find that the inferred intrinsic spectrum of the GRB 980329 afterglow is consistent with the predictions of the simplest relativistic fireball model. We also find that the intrinsic spectrum of the afterglow is extincted both by dust (source frame A_V \ga 1 mag), and that the shape of the extinction curve is typical of young star-forming regions like the Orion Nebula but is not typical of older star-forming or starburst regions. The \approx 2 mag drop between the RR and the II bands can be explained by the far-ultraviolet non-linear component of the extinction curve if 3 \la z \la 4, and by the 2175 Å\ bump if $z given our general model

    Dust and dark Gamma-Ray Bursts: mutual implications

    Full text link
    In a cosmological context dust has been always poorly understood. That is true also for the statistic of GRBs so that we started a program to understand its role both in relation to GRBs and in function of z. This paper presents a composite model in this direction. The model considers a rather generic distribution of dust in a spiral galaxy and considers the effect of changing some of the parameters characterizing the dust grains, size in particular. We first simulated 500 GRBs distributed as the host galaxy mass distribution, using as model the Milky Way. If we consider dust with the same properties as that we observe in the Milky Way, we find that due to absorption we miss about 10% of the afterglows assuming we observe the event within about 1 hour or even within 100s. In our second set of simulations we placed GRBs randomly inside giants molecular clouds, considering different kinds of dust inside and outside the host cloud and the effect of dust sublimation caused by the GRB inside the clouds. In this case absorption is mainly due to the host cloud and the physical properties of dust play a strong role. Computations from this model agree with the hypothesis of host galaxies with extinction curve similar to that of the Small Magellanic Cloud, whereas the host cloud could be also characterized by dust with larger grains. To confirm our findings we need a set of homogeneous infrared observations. The use of coming dedicated infrared telescopes, like REM, will provide a wealth of cases of new afterglow observations.Comment: 16 pages, 8 figures, accepted by A&

    Design and Fabrication of Three-Dimensional Scaffolds for Tissue Engineering of Human Heart Valves

    Get PDF
    We developed a new fabrication technique for 3-dimensional scaffolds for tissue engineering of human heart valve tissue. A human aortic homograft was scanned with an X-ray computer tomograph. The data derived from the X-ray computed tomogram were processed by a computer-aided design program to reconstruct a human heart valve 3-dimensionally. Based on this stereolithographic model, a silicone valve model resembling a human aortic valve was generated. By taking advantage of the thermoplastic properties of polyglycolic acid as scaffold material, we molded a 3-dimensional scaffold for tissue engineering of human heart valves. The valve scaffold showed a deviation of only +/- 3-4% in height, length and inner diameter compared with the homograft. The newly developed technique allows fabricating custom-made, patient-specific polymeric cardiovascular scaffolds for tissue engineering without requiring any suture materials. Copyright (c) 2008 S. Karger AG, Base

    Are there cosmological evolution trends on Gamma-Ray Burst features?

    Full text link
    The variability of gamma-ray burst (GRB) is thought to be correlated with its absolute peak luminosity, and this relation had been used to derive an estimate of the redshifts of GRBs. Recently Amati et al. presented the results of spectral and energetic properties of several GRBs with known redshifts. Here we analyse the properties of two group GRBs, one group with known redshift from afterglow observation, and another group with redshift derived from the luminosity - variability relation. We study the redshift dependence of various GRBs features in their cosmological rest frames, including the burst duration, the isotropic luminosity and radiated energy, and the peak energy EpE_p of νFν\nu F_\nu spectra. We find that, for these two group GRBs, their properties are all redshift dependent, i.e. their intrinsic duration, luminosity, radiated energy and peak energy EpE_p, are all correlated with the redshift, which means that there are cosmological evolution effects on gamma-ray bursts features, and this can provide an interesting clue to the nature of GRBs. If this is true, then the results also imply that the redshift derived from the luminosity - variability relation may be reliable.Comment: Latex, 11 pages. Discussion of the selection effects have been added. Accepted for publication in MNRA
    corecore