51 research outputs found
Recommended from our members
Computational Models of Classical Conditioning guest editors’ introduction
In the present special issue, the performance of current computational models of classical conditioning was evaluated under three requirements: (1) Models were to be tested against a list of previously agreed-upon phenomena; (2) the parameters were fixed across simulations; and (3) the simulations used to test the models had to be made available. These requirements resulted in three major products: (a) a list of fundamental classical-conditioning results for which there is a consensus about their reliability; (b) the necessary information to evaluate each of the models on the basis of its ordinal successes in accounting for the experimental data; and (c) a repository of computational models ready to generate simulations. We believe that the contents of this issue represent the 2012 state of the art in computational modeling of classical conditioning and provide a way to find promising avenues for future model development
Variations in radial maze performance under different levels of food and water deprivation
Erratum to: Compound testing of individually conditioned stimuli as an index of excitatory and inhibitory properties
Compound testing of individually conditioned stimuli as an index of excitatory and inhibitory properties
Interaction of Cultivar, Planting Pattern, and Weed Management Tactics in Peanut
Planting peanut in narrow rows for weed control has not been investigated in recently released Virginia market peanut cultivars. Research was conducted in North Carolina from 2007 to 2009 to determine the effect of cultivar, planting pattern, and level of weed management inputs on weed control, peanut yield, and estimated economic return. Experiments consisted of three levels of weed management (clethodim applied POST, cultivation and hand-removal of weeds, and clethodim and appropriate broadleaf herbicides applied POST), three levels of planting pattern (single rows spaced 91 cm apart, standard twin rows spaced 20 cm apart on 91-cm centers, and narrow twin rows consisting of twin rows spaced 20 cm apart on 46-cm centers), and two Virginia cultivars (‘NC 12C’ and ‘VA 98R’). Weed management affected common lambsquarters, common ragweed, eclipta, nodding spurge, pitted morningglory, Texas millet, and yellow nutsedge control, irrespective of cultivar or planting pattern. Cultivar and planting pattern had only minor effects on weed control and interactions of these treatment factors seldom occurred. Weed control achieved with cultivation plus hand-removal was similar to weed management observed with grass and broadleaf herbicide programs. Pod yield did not differ among treatments when broadleaf weeds were the dominant species but did differ when Texas millet was the most prevalent weed. The highest yield with conventional herbicide weed management was in standard twin and narrow twin row planting patterns, although no differences among planting patterns were noted when cultivation and hand-removal were the primary weed management tactics. Differences in estimated economic return were associated with weed species, and interactions of treatment factors varied by year for that parameter.</jats:p
Phytotoxicity and Benzoxazinone Concentration in Field Grown Cereal Rye (Secale cereale L.)
Winter rye (Secale cereale L.) is used as a cover crop because of the weed suppression potential of its mulch. To gain insight into the more effective use of rye as a cover crop we assessed changes in benzoxazinone (BX) levels in rye shoot tissue over the growing season. Four rye varieties were planted in the fall and samples harvested at intervals the following spring. Two different measures of phytotoxic compound content were taken. Seed germination bioassays were used as an estimate of total phytotoxic potential. Dilutions of shoot extracts were tested using two indicator species to compare the relative toxicity of tissue. In addition, BX (DIBOA, DIBOA-glycoside, and BOA) levels were directly determined using gas chromatography. Results showed that rye tissue harvested in March was the most toxic to indicator species, with toxicity decreasing thereafter. Likewise the BX concentration in rye shoot tissue increased early in the season and then decreased over time. Thus, phytotoxicity measured by bioassay and BX levels measured by GC have a similar but not identical temporal profile. The observed decrease in phytotoxic potential and plant BX levels in rye later in the season appears to correlate with the transition from vegetative to reproductive growth
Crop and field border effects on weed seed predation in the southeastern U.S. coastal plain
Rolled Rye Mulch for Weed Suppression in Organic No-Tillage Soybeans
Rising demand for organic soybeans and high price premiums for organic products have stimulated producer interest in organic soybean production. However, organic soybean producers and those making the transition to organic production cite weed management as their main limitation. Current weed management practices heavily rely on cultivation. Repeated cultivation is expensive and has negative consequences on soil health. Research is needed to improve organic reduced tillage production. Rye cover crop mulches were evaluated for weed suppression abilities and effects on soybean yield. Experiments were planted in 2008 and 2009 at three sites. Rye was planted in the fall of each year and killed at soybean planting with a roller/crimper or flail mower, creating a thick weed-suppressing mulch with potential allelopathic properties. The mulch was augmented with one of three additional weed control tactics: preemergence (PRE) corn gluten meal (CGM), postemergence (POST) clove oil, or postemergence high-residue cultivation. Roll-crimped and flail-mowed treatments had similar weed suppression abilities at most sites. There were no differences between CGM, clove oil, or cultivation at most sites. Sites with rye biomass above 9,000 kg ha−1of dry matter provided weed control that precluded soybean yield loss from competition. In Goldsboro 2008, where rye biomass was 10,854 kg ha−1of dry matter, the soybean yield in the rolled rye treatment was not significantly different from the weed-free treatment, yielding at 2,190 and 2,143 kg ha−1, respectively. Likewise, no difference in soybean yield was found in Plymouth 2008 with a rye biomass of 9,256 kg ha−1and yields of 2,694 kg ha−1and 2,809 kg ha−1in the rolled rye and weed-free treatments, respectively. At low rye biomass levels (4,450 to 6,606 kg ha−1), the rolled rye treatment soybean yield was 628 to 822 kg ha−1less than the weed-free treatment. High rye biomass levels are critical to the success of this production system. However, high rye biomass was, in some cases, also correlated with soybean lodging severe enough to cause concern with this system.</jats:p
Utilizing cover crop mulches to reduce tillage in organic systems in the southeastern USA
- …
