5,377 research outputs found

    Some comments on the ''the composition of the Martian surface'' by R. A. Van Tassel and J. W. Salisbury

    Get PDF
    Feasibility of Martian surface layer composed of silicates coated with limonit

    Upper limits on liquid water in the Venus atmosphere

    Get PDF
    Upper limits on liquid water in Venus atmosphere due to presence of hydrogen chlorid

    The Influence of Topography on the Formation of Temporary Bright Patches on Mars

    Get PDF
    Influence of topography on formation of bright patches on Mar

    Spin frequency distributions of binary millisecond pulsars

    Get PDF
    Rotation-powered millisecond radio pulsars have been spun up to their present spin period by a 10810^8 - 10910^9 yr long X-ray-bright phase of accretion of matter and angular momentum in a low-to-intermediate mass binary system. Recently, the discovery of transitional pulsars that alternate cyclically between accretion and rotation-powered states on time scales of a few years or shorter, has demonstrated this evolutionary scenario. Here, we present a thorough statistical analysis of the spin distributions of the various classes of millisecond pulsars to assess the evolution of their spin period between the different stages. Accreting sources that showed oscillations exclusively during thermonuclear type I X-ray bursts (nuclear-powered millisecond pulsars) are found to be significantly faster than rotation-powered sources, while accreting sources that possess a magnetosphere and show coherent pulsations (accreting millisecond pulsars) are not. On the other hand, if accreting millisecond pulsars and eclipsing rotation-powered millisecond pulsars form a common class of transitional pulsars, these are shown to have a spin distribution intermediate between the faster nuclear-powered millisecond pulsars and the slower non-eclipsing rotation-powered millisecond pulsars. We interpret these findings in terms of a spin-down due to the decreasing mass-accretion rate during the latest stages of the accretion phase, and in terms of the different orbital evolutionary channels mapped by the various classes of pulsars. We summarize possible instrumental selection effects, showing that even if an unbiased sample of pulsars is still lacking, their influence on the results of the presented analysis is reduced by recent improvements in instrumentation and searching techniques.Comment: Accepted for publication in A&A (6 pages, 4 figures

    Comparing supernova remnants around strongly magnetized and canonical pulsars

    Get PDF
    The origin of the strong magnetic fields measured in magnetars is one of the main uncertainties in the neutron star field. On the other hand, the recent discovery of a large number of such strongly magnetized neutron stars, is calling for more investigation on their formation. The first proposed model for the formation of such strong magnetic fields in magnetars was through alpha-dynamo effects on the rapidly rotating core of a massive star. Other scenarios involve highly magnetic massive progenitors that conserve their strong magnetic moment into the core after the explosion, or a common envelope phase of a massive binary system. In this work, we do a complete re-analysis of the archival X-ray emission of the Supernova Remnants (SNR) surrounding magnetars, and compare our results with all other bright X-ray emitting SNRs, which are associated with Compact Central Objects (CCOs; which are proposed to have magnetar-like B-fields buried in the crust by strong accretion soon after their formation), high-B pulsars and normal pulsars. We find that emission lines in SNRs hosting highly magnetic neutron stars do not differ significantly in elements or ionization state from those observed in other SNRs, neither averaging on the whole remnants, nor studying different parts of their total spatial extent. Furthermore, we find no significant evidence that the total X-ray luminosities of SNRs hosting magnetars, are on average larger than that of typical young X-ray SNRs. Although biased by a small number of objects, we found that for a similar age, there is the same percentage of magnetars showing a detectable SNR than for the normal pulsar population.Comment: 16 pages, 5 figures, Accepted for publication in MNRA

    Linking the X-ray timing and spectral properties of the glitching AXP 1RXS J170849-400910

    Full text link
    Previous studies of the X-ray flux and spectral properties of 1RXS J170849-400910 showed hints of a possible correlation with the spin glitches that occurred in 1999 and 2001. However, due to the sparseness of spectral measurements and the paucity of detected glitches no firm conclusion could be drawn. We retrieved and analysed archival XTE pointings of 1RXS J170849-400910 covering the time interval between January 2003 and June 2006 and carried out a detailed timing analysis by means of phase fitting techniques. We detected two relatively large glitches Delta nu / nu of 1.2 and 2.1 10^-6 occurred in January and June 2005. Interestingly, the occurrence times of these glitches are in agreement with the predictions made in our previous studies. This finding strongly suggests a connection between the flux, spectral and timing properties of 1RXS J170849-400910.Comment: Submitted to A&A, 4 pages; results presented at the INT meeting "The Neutron Star Crust and Surface: Observations and Models" on June 27; referee comments adde

    The Spectral Evolution of Transient Anomalous X-ray Pulsar XTE J1810--197

    Full text link
    (Abridged) We present a multi-epoch spectral study of the Transient Anomalous X-ray Pulsar XTE J1810-197 obtained with the XMM X-ray telescope. Four observations taken over the course of a year reveal strong spectral evolution as the source fades from outburst. The origin of this is traced to the individual decay rates of the pulsar's spectral components. A 2-T fit at each epoch requires nearly constant temperatures of kT=0.25 & 0.67 keV while the component luminosities decrease exponentially with tau=900 & 300d, respectively. One possible interpretation is that the slowly decaying cooler component is the radiation from a deep heating event that affected a large fraction of the crust, while the hotter component is powered by external surface heating at the foot-points of twisted magnetic field lines, by magnetospheric currents that are decaying more rapidly. The energy-dependent pulse profile of XTE J1810-197 is well modeled at all epochs by the sum of a sine and triangle function. These profiles peak at the same phase, suggesting a concentric surface emission geometry. The spectral and pulse evolution together argue against the presence of a significant ``power-law'' contribution to the X-ray spectrum below 8 keV. The extrapolated flux is projected to return to the historic quiescent level, characterized by an even cooler blackbody spectrum, by the year 2007.Comment: 12 pages, 6 Figures, Latex, emulateapj. To appear in the Astrophysical Journa

    Long term hard X-ray variability of the anomalous X-ray pulsar 1RXS J170849.0-400910 discovered with INTEGRAL

    Full text link
    We report on a multi-band high-energy observing campaign aimed at studying the long term spectral variability of the Anomalous X-ray Pulsar (AXP) 1RXS J170849.0-400910, one of the magnetar candidates. We observed 1RXS J170849.0-400910 in Fall 2006 and Spring 2007 simultaneously with Swift/XRT, in the 0.1-10 keV energy range, and with INTEGRAL/IBIS, in the 20-200 keV energy range. Furthermore, we also reanalyzed, using the latest calibration and software, all the publicly available INTEGRAL data since 2002, and the soft X-ray data starting from 1999 taken using BeppoSAX, Chandra, XMM, and Swift/XRT, in order to study the soft and hard X-ray spectral variability of 1RXS J170849.0-400910. We find a long-term variability of the hard X-ray flux, extending the hardness-intensity correlation proposed for this source over 2 orders of magnitude in energy.Comment: 5 pages, 2 figures, accepted for publication in Astronomy & Astrophysics main journa

    Magnetars' Giant Flares: the case of SGR 1806-20

    Full text link
    We first review on the peculiar characteristics of the bursting and flaring activity of the Soft Gamma-ray Repeaters and Anomalous X-ray Pulsars. We then report on the properties of the SGR 1806-20's Giant Flare occurred on 2004 December 27th, with particular interest on the pre and post flare intensity/hardness correlated variability. We show that these findings are consistent with the picture of a twisted internal magnetic field which stresses the star solid crust that finally cracks causing the giant flare (and the observed torsional oscillations). This crustal fracturing is accompanied by a simplification of the external magnetic field with a (partial) untwisting of the magnetosphere.Comment: 6 pages, 2 figures; accepted for publication in the Chinese Journal for Astronomy and Astrophysics (Vulcano conference - 2005
    corecore