26 research outputs found
Frontal glutamate and reward processing in adolescence and adulthood
The fronto-limbic network interaction, driven by glutamatergic and dopaminergic neurotransmission, represents a core mechanism of motivated behavior and personality traits. Reward seeking behavior undergoes tremendous changes in adolescence paralleled by neurobiological changes of this network including the prefrontal cortex, striatum and amygdala. Since fronto-limbic dysfunctions also underlie major psychiatric diseases beginning in adolescence, this investigation focuses on network characteristics separating adolescents from adults. To investigate differences in network interactions, the brain reward system activity (slot machine task) together with frontal glutamate concentration (anterior cingulate cortex, ACC) was measured in 28 adolescents and 26 adults employing functional magnetic resonance imaging and magnetic resonance spectroscopy, respectively. An inverse coupling of glutamate concentrations in the ACC and activation of the ventral striatum was observed in adolescents. Further, amygdala response in adolescents was negatively correlated with the personality trait impulsivity. For adults, no significant associations of network components or correlations with impulsivity were found. The inverse association between frontal glutamate concentration and striatal activation in adolescents is in line with the triadic model of motivated behavior stressing the important role of frontal top–down inhibition on limbic structures. Our data identified glutamate as the mediating neurotransmitter of this inhibitory process and demonstrates the relevance of glutamate on the reward system and related behavioral traits like impulsivity. This fronto-limbic coupling may represent a vulnerability factor for psychiatric disorders starting in adolescence but not in adulthood
Reversal learning strategy in adolescence is associated with prefrontal cortex activation
Adolescence is a critical maturation period for human cognitive control and executive function. In this study, a large sample of adolescents (n = 85) performed a reversal learning task during functional magnetic resonance imaging. We analyzed behavioral data using a reinforcement learning model to provide individually fitted parameters and imaging data with regard to reward prediction errors (PE). Following a model-based approach, we formed two groups depending on whether individuals tended to update expectations predominantly for the chosen stimulus or also for the unchosen one. These groups significantly differed in their problem behavior score obtained using the child behavior checklist (CBCL) and in a measure of their developmental stage. Imaging results showed that dorsolateral striatal areas covaried with PE. Participants who relied less on learning based on task structure showed less prefrontal activation compared with participants who relied more on task structure. An exploratory analysis revealed that PE-related activity was associated with pubertal development in prefrontal areas, insula and anterior cingulate. These findings support the hypothesis that the prefrontal cortex is implicated in mediating flexible goal-directed behavioral control