794 research outputs found

    The electric dipole moment of the nucleon from simulations at imaginary vacuum angle theta

    Full text link
    We compute the electric dipole moment of proton and neutron from lattice QCD simulations with N_f=2 flavors of dynamical quarks at imaginary vacuum angle theta. The calculation proceeds via the CP odd form factor F_3. A novel feature of our calculation is that we use partially twisted boundary conditions to extract F_3 at zero momentum transfer. As a byproduct, we test the QCD vacuum at nonvanishing theta.Comment: 22 pages, 10 figure

    Perturbative Wilson loops from unquenched Monte Carlo simulations at weak couplings

    Full text link
    Perturbative expansions of several small Wilson loops are computed through next-to-next-to-leading order in unquenched lattice QCD, from Monte Carlo simulations at weak couplings. This approach provides a much simpler alternative to conventional diagrammatic perturbation theory, and is applied here for the first time to full QCD. Two different sets of lattice actions are considered: one set uses the unimproved plaquette gluon action together with the unimproved staggered-quark action; the other set uses the one-loop-improved Symanzik gauge-field action together with the so-called ``asqtad'' improved-staggered quark action. Simulations are also done with different numbers of dynamical fermions. An extensive study of the systematic uncertainties is presented, which demonstrates that the small third-order perturbative component of the observables can be reliably extracted from simulation data. We also investigate the use of the rational hybrid Monte Carlo algorithm for unquenched simulations with unimproved-staggered fermions. Our results are in excellent agreement with diagrammatic perturbation theory, and provide an important cross-check of the perturbation theory input to a recent determination of the strong coupling αMSˉ(MZ)\alpha_{\bar{\rm MS}}(M_Z) by the HPQCD collaboration.Comment: 14 pages, 8 figure

    A lattice determination of moments of unpolarised nucleon structure functions using improved Wilson fermions

    Get PDF
    Within the framework of quenched lattice QCD and using O(a) improved Wilson fermions and non-perturbative renormalisation, a high statistics computation of low moments of the unpolarised nucleon structure functions is given. Particular attention is paid to the chiral and continuum extrapolations.Comment: LaTeX, 66 pages, 22 figure

    Applied lattice gauge calculations: diquark content of the nucleon

    Get PDF
    As an example of an application of lattice QCD we describe a computation of four-quark operators in the nucleon. The results are interpreted in a diquark language.Comment: 6 pages, 1 figure, Invited talk given by M. G\"ockeler at the European Workshop on the QCD Structure of the Nucleon (QCD - N'02), Ferrara, Italy, 3-6 Apr 200

    Progress towards a lattice determination of (moments of) nucleon structure functions

    Get PDF
    Using unimproved and non-perturbatively O(a) improved Wilson fermions, results are given for the three lowest moments of unpolarised nucleon structure functions. Renormalisation, chiral extrapolation and the continuum limit of the matrix elements are briefly discussed. The simulations are performed for both quenched and two flavours of unquenched fermions. No obvious sign of deviation from linearity in the chiral extrapolations are found. (This is most clearly seen in our quenched unimproved data, which extends to lighter quark mass.) Possible quenching effects also seem to be small. The lowest moment thus remains too large, so it seems to be necessary to reach smaller quark masses in numerical simulations.Comment: 3 pages, Latex, 4 figures, Talk presented at Lattice2001(matrixelement

    Meson decay constants from Nf=2 clover fermions

    Get PDF
    We present recent results for meson decay constants calculated on configurations with two flavours of O(a)-improved Wilson fermions. Non-perturbative renormalisation is applied and quark mass dependencies as well as finite volume and discretisation effects are investigated. In this work we also present a computation of the coupling of the light vector mesons to the tensor current using dynamical fermions.Comment: 6 pages, contribution to Lattice2005(Hadron spectrum and quark masses

    The spin structure of the Lambda hyperon in quenched lattice QCD

    Full text link
    It has been suggested to use the production of Lambda hyperons for investigating the nucleon spin structure. The viability of this idea depends crucially on the spin structure of the Lambda. Using nonperturbatively O(a) improved Wilson fermions in the quenched approximation we have studied matrix elements of two-quark operators in the Lambda. We present results for the axial vector current, which give us the contributions of the u, d, and s quarks to the Lambda spin.Comment: Lattice2001(matrixelement), 3 pages, 2 figure
    corecore