20 research outputs found
A Short Counterexample Property for Safety and Liveness Verification of Fault-tolerant Distributed Algorithms
Distributed algorithms have many mission-critical applications ranging from
embedded systems and replicated databases to cloud computing. Due to
asynchronous communication, process faults, or network failures, these
algorithms are difficult to design and verify. Many algorithms achieve fault
tolerance by using threshold guards that, for instance, ensure that a process
waits until it has received an acknowledgment from a majority of its peers.
Consequently, domain-specific languages for fault-tolerant distributed systems
offer language support for threshold guards.
We introduce an automated method for model checking of safety and liveness of
threshold-guarded distributed algorithms in systems where the number of
processes and the fraction of faulty processes are parameters. Our method is
based on a short counterexample property: if a distributed algorithm violates a
temporal specification (in a fragment of LTL), then there is a counterexample
whose length is bounded and independent of the parameters. We prove this
property by (i) characterizing executions depending on the structure of the
temporal formula, and (ii) using commutativity of transitions to accelerate and
shorten executions. We extended the ByMC toolset (Byzantine Model Checker) with
our technique, and verified liveness and safety of 10 prominent fault-tolerant
distributed algorithms, most of which were out of reach for existing
techniques.Comment: 16 pages, 11 pages appendi
Sessile Drop in Microgravity: Creation, Contact Angle and Interface
We present in this paper the results obtained from a parabolic flight campaign regarding the contact angle and the drop interface behavior of sessile drops created under terrestrial gravity (1g) or in microgravity (mu g). This is a preliminary study before further investigations on sessile drops evaporation under microgravity. In this study, drops are created by the mean of a syringe pump by injection through the substrate. The created drops are recorded using a video camera to extract the drops contact angles. Three fluids have been used in this study : de-ionized water, HFE-7100 and FC-72 and two heating surfaces: aluminum and PTFE. The results obtained evidence the feasibility of sessile drop creation in microgravity even for low surface tension liquids (below 15 mN m (-aEuro parts per thousand 1)) such as FC-72 and HFE-7100. We also evidence the contact angle behavior depending of the drop diameter and the gravity level. A second objective of this study is to analyze the drop interface shape in microgravity. The goal of the these experiments is to obtain reference data on the sessile drop behavior in microgravity for future experiments to be performed in an French-Chinese scientific instrument (IMPACHT)
Evaporation of Ethanol Drops on a Heated Substrate Under Microgravity Conditions
We present in this paper results obtained from a parabolic flight campaign regarding ethanol sessile drop evaporation under reduced gravity conditions. Drops are created using a syringe pump by means of injection through a PTFE (polytetrafluoroethylene) substrate. The drops are recorded using a video camera and an infrared camera to observe the thermal motion inside the drop and on the heating substrate. The experimental set-up presented in this paper enables the simultaneous visualization and access to the heat flux density that is transferred to the drop using a heat flux meter placed between the heating block and the PTFE substrate. We evidence original thermal spreading phenomena during the ethanol drop creation on a heated PTFE substrate. The drop exhibits specific behaviour which is discussed here. This work is performed in the frame of a French-Chinese collaboration (project IMPACHT) for future experiments in a Chinese scientific satellite
Certification of an exact worst-case self-stabilization time
International audienc
Certification of an Exact Worst-Case Self-Stabilization Time
International audienc