1,660 research outputs found

    A hybrid MPI-OpenMP scheme for scalable parallel pseudospectral computations for fluid turbulence

    Get PDF
    A hybrid scheme that utilizes MPI for distributed memory parallelism and OpenMP for shared memory parallelism is presented. The work is motivated by the desire to achieve exceptionally high Reynolds numbers in pseudospectral computations of fluid turbulence on emerging petascale, high core-count, massively parallel processing systems. The hybrid implementation derives from and augments a well-tested scalable MPI-parallelized pseudospectral code. The hybrid paradigm leads to a new picture for the domain decomposition of the pseudospectral grids, which is helpful in understanding, among other things, the 3D transpose of the global data that is necessary for the parallel fast Fourier transforms that are the central component of the numerical discretizations. Details of the hybrid implementation are provided, and performance tests illustrate the utility of the method. It is shown that the hybrid scheme achieves near ideal scalability up to ~20000 compute cores with a maximum mean efficiency of 83%. Data are presented that demonstrate how to choose the optimal number of MPI processes and OpenMP threads in order to optimize code performance on two different platforms.Comment: Submitted to Parallel Computin

    A minimal two-band model for the superconducting Fe-pnictides

    Full text link
    Following the discovery of the Fe-pnictide superconductors, LDA band structure calculations showed that the dominant contributions to the spectral weight near the Fermi energy came from the Fe 3d orbitals. The Fermi surface is characterized by two hole surfaces around the Γ\Gamma point and two electron surfaces around the M point of the 2 Fe/cell Brillouin zone. Here, we describe a 2-band model that reproduces the topology of the LDA Fermi surface and exhibits both ferromagnetic and q=(π,0)q=(\pi,0) spin density wave (SDW) fluctuations. We argue that this minimal model contains the essential low energy physics of these materials.Comment: 5 figures, 5 page

    Charge and spin collective modes in a quasi-1D model of Sr2RuO4

    Full text link
    Given that Sr2RuO4 is a two-component p-wave superconductor, there exists the possibility of well defined collective modes corresponding to fluctuations of the relative phase and spin-orientation of the two components of the order parameter. We demonstrate that at temperatures much below Tc, these modes have energies small compared to the pairing gap scale if the superconductivity arises primarily from the quasi 1D (dxz and dyz) bands, while it is known that their energies become comparable to the pairing gap scale if there is a substantial involvement of the quasi 2D (dxy) band. Therefore, the orbital origin of the superconductivity can be determined by measuring the energies of these collective modes.Comment: 11 pages (6 pages for main text), 2 figure

    Effects of River Inputs into the Bay of Bengal

    Get PDF
    The effect of river runoff in the Bay of Bengal is examined using a reduced gravity primitive equation ocean model coupled to an atmospheric boundary layer model. Model simulations are carried out by including river discharges as surface freshwater forcing at the mouths of the rivers. To assess the effect of river inputs on the dynamics and thermodynamics of the tropical Indian Ocean, parallel simulations are carried out by neglecting the river inputs. Additionally, another set of parallel runs without penetrative radiation loss through the mixed layer is carried out. The freshwater flux due to rivers results in lower salinities and shallower mixed layers, as expected. However, the influence of this additional freshwater flux into the bay is rather counterintuitive. With the inclusion of river discharges more heat is absorbed by the ocean, but sea surface temperatures are slightly cooler in the bay because of enhanced entrainment cooling of the shallower mixed layer, enhanced penetrative radiation, and an enhanced effect of latent heat loss on the temperature tendency. This is despite the greater latent heat loss when river input is neglected. Conversley, neglect of penetrative radiation results in a shallower but slightly warmer mixed layer with river input. River input and penetrative radiation each affect the mixed layer depths, the salinity and temperature structure, and currents in the Bay of Bengal, but they have a small effect on SST. Annual SST, averaged over the Bay of Bengal, is only 0.1 degreesC colder with river input. Neglecting penetrative radiation in the river run results in an increase of only 0.2 degreesC for the annual SST. The lack of persistence of a barrier layer in the bay helps regulate SST even in the presence of enhanced buoyancy forcing due to river input. Averaged over the bay, a barrier layer forms as mixed layer detrainment occurs, and the thermocline deepens just after the southwest monsoon and the northeast monsoon. The barrier layer is short-lived in each case it is eroded by mixing. The effect of riverine input in the bay is not confined to the surface waters. A pool of cold anomaly (-1 degreesC) and fresher waters is centered near 100 m depth in the bay with riverine input. This cold pool beneath the mixed layer allows entrainment cooling of the mixed layer to be more effective, even though mass entrainment is lower relative to the case neglecting river input. The more diffuse thermocline in the bay is consistent with enhanced vertical mixing despite the large positive buoyancy forcing

    Location of Solution Channels and Sinkholes at Dam Sites and Backwater Areas by Seismic Methods: Part II

    Get PDF
    Four seismic field methods and a laboratory method are used to determine shear wave propagation velocities and shear moduli for two sites. The four seismic methods are: standard seismic refraction survey, down hole shooting refraction survey, transient Rayleigh wave survey, and crosshole shooting survey. A torsional resonant column apparatus was used for the laboratory tests. The cross hole shooting method gave the best results because direct measurements were made. Criteria for using this method are given. Methods which measure compression wave velocity give inconsistent results because the conversion to shear wave velocity is very sensitive to Poisson\u27s ratio. Laboratory tests data gave consistently low values. Strength reduction due to sampling was one cause advanced. Laboratory tests also showed increase in values with time. Strength and time effect corrections were applied to the laboratory data and then comparisons were made with the field data
    corecore