3,375 research outputs found
Probing semiclassical magneto-oscillations in the low-field quantum Hall effect
The low-field quantum Hall effect is investigated on a two-dimensional
electron system in an AlGaAs/GaAs heterostructure. Magneto-oscillations
following the semiclassical Shubnikov-de Haas formula are observed even when
the emergence of the mobility gap shows the importance of quantum localization
effects. Moreover, the Lifshitz-Kosevich formula can survive as the oscillating
amplitude becomes large enough for the deviation to the Dingle factor. The
crossover from the semiclassical transport to the description of quantum
diffusion is discussed. From our study, the difference between the mobility and
cyclotron gaps indicates that some electron states away from the Landau-band
tails can be responsible for the semiclassical behaviors under low-field Landau
quantization.Comment: 14 pages, 6 figure
Crystal Structures of Influenza A Virus Matrix Protein M1: Variations on a Theme
Matrix protein 1 (M1) of the influenza A virus plays multiple roles in virion assembly and infection. Interest in the pH dependence of M1\u27s multiple functions led us to study the effect of subtle pH changes on M1 structure, resulting in the elucidation of a unique low-pH crystal structure of the N1-165-domain of A/WSN/33 (H1N1) M1 that has never been reported. Although the 2.2 Å crystal structure of M1 N-terminus shows a dimer with the two monomers interacting in a face-to-face fashion at low pH as observed earlier, a 44° rotation of the second monomer has led to a significantly different dimer interface that possibly affects dimer stability. More importantly, while one of the monomers is fully defined, the N-terminal half of the second monomer shows considerable disorder that appears inherent in the protein and is potentially physiologically relevant. Such disorder has not been observed in any other previously reported structure at either low or high pH conditions, despite similar crystallization pH conditions. By comparing our novel N1-165-domain structure with other low-pH or neutral-pH M1 structures, it appears that M1 can energetically access different monomer and dimer conformations, as well as oligomeric states, with varying degree of similarities. The study reported here provides further insights into M1 oligomerization that may be essential for viral propagation and infectivity
3-D Model of Broadband Emission from Supernova Remnants Undergoing Non-linear Diffusive Shock Acceleration
We present a 3-dimensional model of supernova remnants (SNRs) where the
hydrodynamical evolution of the remnant is modeled consistently with nonlinear
diffusive shock acceleration occuring at the outer blast wave. The model
includes particle escape and diffusion outside of the forward shock, and
particle interactions with arbitrary distributions of external ambient
material, such as molecular clouds. We include synchrotron emission and
cooling, bremsstrahlung radiation, neutral pion production, inverse-Compton
(IC), and Coulomb energy-loss. Boardband spectra have been calculated for
typical parameters including dense regions of gas external to a 1000 year old
SNR. In this paper, we describe the details of our model but do not attempt a
detailed fit to any specific remnant. We also do not include magnetic field
amplification (MFA), even though this effect may be important in some young
remnants. In this first presentation of the model we don't attempt a detailed
fit to any specific remnant. Our aim is to develop a flexible platform, which
can be generalized to include effects such as MFA, and which can be easily
adapted to various SNR environments, including Type Ia SNRs, which explode in a
constant density medium, and Type II SNRs, which explode in a pre-supernova
wind. When applied to a specific SNR, our model will predict cosmic-ray spectra
and multi-wavelength morphology in projected images for instruments with
varying spatial and spectral resolutions. We show examples of these spectra and
images and emphasize the importance of measurements in the hard X-ray, GeV, and
TeV gamma-ray bands for investigating key ingredients in the acceleration
mechanism, and for deducing whether or not TeV emission is produced by IC from
electrons or neutral pions from protons.Comment: 12 pages, 9 figures, accepted by Apj, 24 June 200
Effects of Zeeman spin splitting on the modular symmetry in the quantum Hall effect
Magnetic-field-induced phase transitions in the integer quantum Hall effect
are studied under the formation of paired Landau bands arising from Zeeman spin
splitting. By investigating features of modular symmetry, we showed that
modifications to the particle-hole transformation should be considered under
the coupling between the paired Landau bands. Our study indicates that such a
transformation should be modified either when the Zeeman gap is much smaller
than the cyclotron gap, or when these two gaps are comparable.Comment: 8 pages, 4 figure
Experimental Studies of Low-field Landau Quantization in Two-dimensional Electron Systems in GaAs/AlGaAs Heterostructures
By applying a magnetic field perpendicular to GaAs/AlGaAs two-dimensional
electron systems, we study the low-field Landau quantization when the thermal
damping is reduced with decreasing the temperature. Magneto-oscillations
following Shubnikov-de Haas (SdH) formula are observed even when their
amplitudes are so large that the deviation to such a formula is expected. Our
experimental results show the importance of the positive magneto-resistance to
the extension of SdH formula under the damping induced by the disorder.Comment: 9 pages, 3 figure
An experimental study on (2) modular symmetry in the quantum Hall system with a small spin-splitting
Magnetic-field-induced phase transitions were studied with a two-dimensional
electron AlGaAs/GaAs system. The temperature-driven flow diagram shows the
features of the (2) modular symmetry, which includes distorted
flowlines and shiftted critical point. The deviation of the critical
conductivities is attributed to a small but resolved spin splitting, which
reduces the symmetry in Landau quantization. [B. P. Dolan, Phys. Rev. B 62,
10278.] Universal scaling is found under the reduction of the modular symmetry.
It is also shown that the Hall conductivity could still be governed by the
scaling law when the semicircle law and the scaling on the longitudinal
conductivity are invalid. *corresponding author:[email protected]: The revised manuscript has been published in J. Phys.: Condens.
Matte
Dynamics of Helping Behavior and Networks in a Small World
To investigate an effect of social interaction on the bystanders'
intervention in emergency situations a rescue model was introduced which
includes the effects of the victim's acquaintance with bystanders and those
among bystanders from a network perspective. This model reproduces the
experimental result that the helping rate (success rate in our model) tends to
decrease although the number of bystanders increases. And the interaction
among homogeneous bystanders results in the emergence of hubs in a helping
network. For more realistic consideration it is assumed that the agents are
located on a one-dimensional lattice (ring), then the randomness
is introduced: the random bystanders are randomly chosen from a whole
population and the near bystanders are chosen in the nearest order to
the victim. We find that there appears another peak of the network density in
the vicinity of and due to the cooperative and competitive
interaction between the near and random bystanders.Comment: 13 pages, 8 figure
Charge qubit dynamics in a double quantum dot coupled to phonons
The dynamics of charge qubit in a double quantum dot coupled to phonons is
investigated theoretically in terms of a perturbation treatment based on a
unitary transformation. The dynamical tunneling current is obtained explicitly.
The result is compared with the standard perturbation theory at Born-Markov
approximation. The decoherence induced by acoustic phonons is analyzed at
length. It is shown that the contribution from deformation potential coupling
is comparable to that from piezoelectric coupling in small dot size and large
tunneling rate case. A possible decoupling mechanism is predicted.Comment: 8 pages, 6 figure
- …
