2,964 research outputs found

    Injectable hybrid hydrogels physically crosslinked based on carrageenan and green graphene for tissue repair

    Get PDF
    Injectable and biocompatible novel hybrid hydrogels based on physically crosslinked natural biopolymers and green graphene for potential use in tissue engineering are reported. Kappa and iota carrageenan, locust bean gum and gelatin are used as biopolymeric matrix. The effect of green graphene content on the swelling behavior, mechanical properties and biocompatibility of the hybrid hydrogels is investigated. The hybrid hydrogels present a porous network with three-dimensionally interconnected microstructures, with lower pore size than that of the hydrogel without graphene. The addition of graphene into the biopolymeric network improves the stability and the mechanical properties of the hydrogels in phosphate buffer saline solution at 37 °C without noticeable change in the injectability. The mechanical properties of the hybrid hydrogels were enhanced by varying the dosage of graphene between 0.025 and 0.075 w/v%. In this range, the hybrid hydrogels preserve their integrity during mechanical test and recover the initial shape after removing the applied stress. Meanwhile, hybrid hydrogels with graphene content of up to 0.05 w/v% exhibit good biocompatibility for 3T3-L1 fibroblasts; the cells proliferate inside the gel structure and show higher spreading after 48 h. These injectable hybrid hydrogels with graphene have promising future as materials for tissue repair.The research leading to these results received funding from the Xunta de Galicia Government: program of consolidation and structuring competitive research units [grant number: ED431C 2019/17]. Y.F. is a ‘Sara Borrell’ researcher funded by Instituto de Salud Carlos III (ISCIII) and co-funded by Fondo Europeo de Desarrollo Regional (FEDER) [CD21/00042]. Thanks to Corfo 22CVID-206836, CIPA, ANID Regional, GORE BIO BIO, R17A10003, ACE210016, ACE210012. Funding for open access charge was provided by Universidade da Coruna/CISU

    Balloon kyphoplasty in malignant spinal fractures: a systematic review and meta-analysis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Spinal fractures are a common source of morbidity in cancer patients. Balloon Kyphoplasty (BKP) is a minimally invasive procedure designed to stabilize fractures and correct vertebral deformities. We performed a meta-analysis to determine the efficacy and safety of BKP for spinal fractures in cancer patients.</p> <p>Methods</p> <p>We searched several electronic databases up to September 2008 and the reference lists of relevant publications for studies reporting on BKP in patients with spinal fractures secondary to osteolytic metastasis and multiple myeloma. Outcomes sought included pain relief, functional capacity, quality of life, vertebral height, kyphotic angle and adverse events. Studies were assessed for methodological bias, and estimates of effect were calculated using a random-effects model. Potential reasons for heterogeneity were explored.</p> <p>Results</p> <p>The literature search revealed seven relevant studies published from 2003 to 2008, none of which were randomized trials. Analysis of those studies indicated that BKP resulted in less pain and better functional outcomes, and that these effects were maintained up to 2 years post-procedure. While BKP also improved early vertebral height loss and spinal deformity, these effects were not long-term. No serious procedure-related complications were described. Clinically asymptomatic cement leakage occurred in 6% of all treated levels, and new vertebral fractures in 10% of patients. While there is a lack of studies comparing BKP to other interventions, some data suggested that BKP provided similar pain relief as vertebroplasty and a lower cement leakage rate.</p> <p>Conclusion</p> <p>It appears that there is level III evidence showing BKP is a well-tolerated, relatively safe and effective technique that provides early pain relief and improved functional outcomes in patients with painful neoplastic spinal fractures. BKP also provided long-term benefits in terms of pain and disability. However, the methodological quality of the original studies prevents definitive conclusions being drawn. Further investigation into the use of BKP for spinal fractures in cancer patients is warranted.</p

    A chromosome-level genome assembly enables the identification of the follicule stimulating hormone receptor as the master sex determining gene in the flatfish Solea senegalensis

    Get PDF
    Sex determination (SD) shows huge variation among fish and a high evolutionary rate, as illustrated by the Pleuronectiformes (flatfishes). This order is characterized by its adaptation to demersal life, compact genomes and diversity of SD mechanisms. Here, we assembled the Solea senegalensis genome, a flatfish of great commercial value, into 82 contigs (614 Mb) combining long- and short-read sequencing, which were next scaffolded using a highly dense genetic map (28,838 markers, 21 linkage groups), representing 98.9% of the assembly. Further, we established the correspondence between the assembly and the 21 chromosomes by using BAC-FISH. Whole genome resequencing of six males and six females enabled the identification of 41 SNP variants in the follicle stimulating hormone receptor (fshr) consistent with an XX / XY SD system. The observed sex association was validated in a broader independent sample, providing a novel molecular sexing tool. Fshr displayed differential gene expression between male and female gonads from 86 days post-fertilization, when the gonad is still an undifferentiated primordium, concomitant with the activation of amh and cyp19a1a, testis and ovary marker genes, respectively, in males and females. The Y-linked fshr allele, which included 24 non-synonymous variants and showed a highly divergent 3D protein structure, was overexpressed in males compared to the X-linked allele at all stages of gonadal differentiation. We hypothesize a mechanism hampering the action of the follicle stimulating hormone driving the undifferentiated gonad toward testis.info:eu-repo/semantics/acceptedVersio

    Constraints on the χ_(c1) versus χ_(c2) polarizations in proton-proton collisions at √s = 8 TeV

    Get PDF
    The polarizations of promptly produced χ_(c1) and χ_(c2) mesons are studied using data collected by the CMS experiment at the LHC, in proton-proton collisions at √s=8  TeV. The χ_c states are reconstructed via their radiative decays χ_c → J/ψγ, with the photons being measured through conversions to e⁺e⁻, which allows the two states to be well resolved. The polarizations are measured in the helicity frame, through the analysis of the χ_(c2) to χ_(c1) yield ratio as a function of the polar or azimuthal angle of the positive muon emitted in the J/ψ → μ⁺μ⁻ decay, in three bins of J/ψ transverse momentum. While no differences are seen between the two states in terms of azimuthal decay angle distributions, they are observed to have significantly different polar anisotropies. The measurement favors a scenario where at least one of the two states is strongly polarized along the helicity quantization axis, in agreement with nonrelativistic quantum chromodynamics predictions. This is the first measurement of significantly polarized quarkonia produced at high transverse momentum
    corecore