18,799 research outputs found

    Momentum Distribution of Near-Zero-Energy Photoelectrons in the Strong-Field Tunneling Ionization in the Long Wavelength Limit

    Full text link
    We investigate the ionization dynamics of Argon atoms irradiated by an ultrashort intense laser of a wavelength up to 3100 nm, addressing the momentum distribution of the photoelectrons with near-zero-energy. We find a surprising accumulation in the momentum distribution corresponding to meV energy and a \textquotedblleft V"-like structure at the slightly larger transverse momenta. Semiclassical simulations indicate the crucial role of the Coulomb attraction between the escaping electron and the remaining ion at extremely large distance. Tracing back classical trajectories, we find the tunneling electrons born in a certain window of the field phase and transverse velocity are responsible for the striking accumulation. Our theoretical results are consistent with recent meV-resolved high-precision measurements.Comment: 5 pages, 4 figure

    NMR Search for the Spin Nematic State in LaFeAsO Single Crystal

    Full text link
    We report a 75-As single crystal NMR investigation of LaFeAsO, the parent phase of a pnictide high Tc superconductor. We demonstrate that spin dynamics develop a strong two-fold anisotropy within each orthorhombic domain below the tetragonal-orthorhombic structural phase transition at T[TO]~156 K. This intermediate state with a dynamical breaking of the rotational symmetry freezes progressively into a spin density wave (SDW) below T[SDW]~142 K. Our findings are consistent with the presence of a spin nematic state below T[TO] with an incipient magnetic order.Comment: Revised manuscript accepted for publication in Phys. Rev. Let

    A characterization of compact complex tori via automorphism groups

    Full text link
    We show that a compact Kaehler manifold X is a complex torus if both the continuous part and discrete part of some automorphism group G of X are infinite groups, unless X is bimeromorphic to a non-trivial G-equivariant fibration. Some applications to dynamics are given.Comment: title changed, to appear in Math. An

    Assessing the accuracy of energy turbulent diffusion dispersion correlation in a porous two-fluid model dedicated to PWR core simulations

    Get PDF
    International audienceCATHARE is a 2-fluid thermal-hydraulic code, capable of simulating thermal and mechanical phenomena occurring in the primary and secondary circuits of Pressurized Water Reactor under a wide variety of accidental situations. One of the medium-term objectives of system code CATHARE-3 is modeling a PWR core at assembly scale to simulate various accidental situations such as the loss of coolant accident (LOCA) and steam line break accident. This requires the monophasic and two-phase models that adapted to the assembly scale. However, there exists 3D models for the whole core and sub-channel scale models, which have a certain degree of validation. For more macroscopic three-dimensional models, we only have global validations without local measurements, which is necessary for the validations of each closure law's separate effects. The objective of my PhD project is improving the sub-channel scale models and developing the assembly scale models in CATHARE-3 system code with the sub-channel scale simulations and experiments results

    Free nitrous acid-based nitrifying sludge treatment in a two-sludge system enhances nutrient removal from low-carbon wastewater

    Full text link
    © 2017 Elsevier Ltd A new method to enhance nutrient removal from low carbon-wastewater was developed. The method consists of a two-sludge system (i.e., an anaerobic-anoxic-oxic reactor coupled to a nitrifying reactor (N-SBR)) and a nitrifying-sludge treatment unit using free nitrous acid (FNA). Initially, 65.1 ± 2.9% in total nitrogen removal and 69.6 ± 3.4% in phosphate removal were obtained without nitrite accumulation. When 1/16 of the nitrifying sludge was daily treated with FNA at 1.1 mg N/L for 24 h, ∼28.5% of nitrite was accumulated in the N-SBR, and total nitrogen and phosphate removal increased to 72.4 ± 3.2% and 76.7 ± 2.9%, respectively. About 67.8% of nitrite was accumulated at 1.9 mg N/L FNA, resulting in 82.9 ± 3.8% in total nitrogen removal and 87.9 ± 3.5% in phosphate removal. Fluorescence in-situ hybridization analysis showed that FNA treatment reduced the abundance of nitrite oxidizing bacteria (NOB), especially that of Nitrospira sp

    Demonstrating Additional Law of Relativistic Velocities based on Squeezed Light

    Full text link
    Special relativity is foundation of many branches of modern physics, of which theoretical results are far beyond our daily experience and hard to realized in kinematic experiments. However, its outcomes could be demonstrated by making use of convenient substitute, i.e. squeezed light in present paper. Squeezed light is very important in the field of quantum optics and the corresponding transformation can be regarded as the coherent state of SU(1; 1). In this paper, the connection between the squeezed operator and Lorentz boost is built under certain conditions. Furthermore, the additional law of relativistic velocities and the angle of Wigner rotation are deduced as well
    corecore