15,166 research outputs found

    Nuclear modification factor in intermediate-energy heavy-ion collisions

    Get PDF
    The transverse momentum dependent nuclear modification factors (NMF), namely RCPR_{CP}, is investigated for protons produced in Au + Au at 1AA GeV within the framework of the isospin-dependent quantum molecular dynamics (IQMD) model. It is found that the radial collective motion during the expansion stage affects the NMF at low transverse momentum a lot. By fitting the transverse mass spectra of protons with the distribution function from the Blast-Wave model, the magnitude of radial flow can be extracted. After removing the contribution from radial flow, the RCPR_{CP} can be regarded as a thermal one and is found to keep unitary at transverse momentum lower than 0.6 GeV/c and enhance at higher transverse momentum, which can be attributed to Cronin effect.Comment: 8 pages, 5 figures; aceepted by Physics Letters

    Excitation Energy as a Basic Variable to Control Nuclear Disassembly

    Get PDF
    Thermodynamical features of Xe system is investigated as functions of temperature and freeze-out density in the frame of lattice gas model. The calculation shows different temperature dependence of physical observables at different freeze-out density. In this case, the critical temperature when the phase transition takes place depends on the freeze-out density. However, a unique critical excitation energy reveals regardless of freeze-out density when the excitation energy is used as a variable insteading of temperature. Moreover, the different behavior of other physical observables with temperature due to different ρf\rho_f vanishes when excitation energy replaces temperature. It indicates that the excitation energy can be seen as a more basic quantity to control nuclear disassembly.Comment: 3 pages, 2 figures, Revte
    corecore