108,763 research outputs found

    The role of qqˉq\bar q components in the N(1440) resonance

    Full text link
    The role of 5-quark components in the pion and electromagnetic decays and transition form factors of the N(1440) is explored. The qqqqqˉqqqq\bar q components, where the 4-quark subsystem has the flavor-spin symmetries [4]FS[22]F[22]S[4]_{FS}[22]_F[22]_S and [4]FS[31]F[31]S[4]_{FS}[31]_F[31]_S, which are expected to have the lowest energy of all qqqqqˉqqqq\bar q configurations, are considered in detail with a nonrelativistic quark model. The matrix elements between the 5-quark components of the N(1440) and the nucleon, qqqqqˉqqqqqˉqqqq\bar q\to qqqq\bar q, play a minor role in these decays, while the transition matrix elements qqqqqˉqqqqqqq\bar q\to qqq and qqqqqqqqˉqqq\to qqqq\bar q that involve quark antiquark annihilation are very significant. Both for the electromagnetic and strong decay the change from the valence quark model value is dominated by the confinement triggered qqˉq\bar q annihilation transitions. In the case of pion decay the calculated decay width is enhanced substantially both by the direct qqˉπq\bar q \to \pi and also by the confinement triggered qqˉπq\bar q\to \pi transitions. Agreement with the empirical value for the pion decay width may be reached with a \sim 30% qqqqqˉqqqq\bar q component in the N(1440).Comment: 23 pages revte

    Resonant Interactions in Rotating Homogeneous Three-dimensional Turbulence

    Full text link
    Direct numerical simulations of three-dimensional (3D) homogeneous turbulence under rapid rigid rotation are conducted to examine the predictions of resonant wave theory for both small Rossby number and large Reynolds number. The simulation results reveal that there is a clear inverse energy cascade to the large scales, as predicted by 2D Navier-Stokes equations for resonant interactions of slow modes. As the rotation rate increases, the vertically-averaged horizontal velocity field from 3D Navier-Stokes converges to the velocity field from 2D Navier-Stokes, as measured by the energy in their difference field. Likewise, the vertically-averaged vertical velocity from 3D Navier-Stokes converges to a solution of the 2D passive scalar equation. The energy flux directly into small wave numbers in the kz=0k_z=0 plane from non-resonant interactions decreases, while fast-mode energy concentrates closer to that plane. The simulations are consistent with an increasingly dominant role of resonant triads for more rapid rotation

    Stability Of contact discontinuity for steady Euler System in infinite duct

    Full text link
    In this paper, we prove structural stability of contact discontinuities for full Euler system

    Five-quark components in Δ(1232)Nπ\Delta(1232)\to N\pi decay

    Full text link
    Five-quark qqqqqˉqqqq\bar q components in the Δ(1232)\Delta(1232) are shown to contribute significantly to Δ(1232)Nπ\Delta(1232)\to N\pi decay through quark-antiquark annihilation transitions. These involve the overlap between the qqqqqq and qqqqqˉqqqq\bar q components and may be triggered by the confining interaction between the quarks. With a \sim 10% admixture of five-quark components in the Δ(1232)\Delta(1232) the decay width can be larger by factors 2 - 3 over that calculated in the quark model with 3 valence quarks, depending on the details of the confining interaction. The effect of transitions between the qqqqqˉqqqq\bar q components themselves on the calculated decay width is however small. The large contribution of the quark-antiquark annihilation transitions thus may compensate the underprediction of the width of the Δ(1232)\Delta(1232) by the valence quark model, once the Δ(1232)\Delta(1232) contains qqqqqˉqqqq\bar q components with \sim 10% probability.Comment: accepted versio

    Global analysis of quadrupole shape invariants based on covariant energy density functionals

    Full text link
    Coexistence of different geometric shapes at low energies presents a universal structure phenomenon that occurs over the entire chart of nuclides. Studies of the shape coexistence are important for understanding the microscopic origin of collectivity and modifications of shell structure in exotic nuclei far from stability. The aim of this work is to provide a systematic analysis of characteristic signatures of coexisting nuclear shapes in different mass regions, using a global self-consistent theoretical method based on universal energy density functionals and the quadrupole collective model. The low-energy excitation spectrum and quadrupole shape invariants of the two lowest 0+0^{+} states of even-even nuclei are obtained as solutions of a five-dimensional collective Hamiltonian (5DCH) model, with parameters determined by constrained self-consistent mean-field calculations based on the relativistic energy density functional PC-PK1, and a finite-range pairing interaction. The theoretical excitation energies of the states: 21+2^+_1, 41+4^+_1, 02+0^+_2, 22+2^+_2, 23+2^+_3, as well as the B(E2;01+21+)B(E2; 0^+_1\to 2^+_1) values, are in very good agreement with the corresponding experimental values for 621 even-even nuclei. Quadrupole shape invariants have been implemented to investigate shape coexistence, and the distribution of possible shape-coexisting nuclei is consistent with results obtained in recent theoretical studies and available data. The present analysis has shown that, when based on a universal and consistent microscopic framework of nuclear density functionals, shape invariants provide distinct indicators and reliable predictions for the occurrence of low-energy coexisting shapes. This method is particularly useful for studies of shape coexistence in regions far from stability where few data are available.Comment: 13 pages, 3 figures, accepted for publication in Phys. Rev.
    corecore