1,711 research outputs found
Distilling Quantum Entanglement via Mode-Matched Filtering
We propose a new avenue towards distillation of quantum entanglement that is
implemented by directly passing the entangled qubits through a mode-matched
filter. This approach can be applied to a common class of entanglement
impurities appearing in photonic systems where the impurities inherently occupy
different spatiotemporal modes than the entangled qubits. As a specific
application, we show that our method can be used to significantly purify the
telecom-band entanglement generated via the Kerr nonlinearity in single-mode
fibers where a substantial amount of Raman-scattering noise is concomitantly
produced.Comment: 6 pages, 2 figures, to appear in Phys. Rev.
Heralding Single Photons Without Spectral Factorability
Recent efforts to produce single photons via heralding have relied on
creating spectrally factorable two-photon states in order to achieve both high
purity and high production rate. Through a careful multimode analysis, we find,
however, that spectral factorability is not necessary. Utilizing single-mode
detection, a similar or better performance can be achieved with non-factorable
states. This conclusion rides on the fact that even when using a broadband
filter, a single-mode measurement can still be realized, as long as the
coherence time of the triggering photons exceeds the measurement window of the
on/off detector.Comment: 7 pages, 5 figure
Generation and manipulation of squeezed states of light in optical networks for quantum communication and computation
We analyze a fiber-optic component which could find multiple uses in novel
information-processing systems utilizing squeezed states of light. Our approach
is based on the phenomenon of photon-number squeezing of soliton noise after
the soliton has propagated through a nonlinear optical fiber. Applications of
this component in optical networks for quantum computation and quantum
cryptography are discussed.Comment: 12 pages, 2 figures; submitted to Journal of Optics
Optical-fiber source of polarization-entangled photon pairs in the 1550nm telecom band
We present a fiber based source of polarization-entangled photon pairs that
is well suited for quantum communication applications in the 1550nm band of
standard fiber-optic telecommunications. Polarization entanglement is created
by pumping a nonlinear-fiber Sagnac interferometer with two time-delayed
orthogonally-polarized pump pulses and subsequently removing the time
distinguishability by passing the parametrically scattered signal-idler photon
pairs through a piece of birefringent fiber. Coincidence detection of the
signal-idler photons yields biphoton interference with visibility greater than
90%, while no interference is observed in direct detection of either the signal
or the idler photons. All four Bell states can be prepared with our setup and
we demonstrate violations of CHSH form of Bell's inequalities by up to 10
standard deviations of measurement uncertainty.Comment: 12 pages, 4 figures, to be submitted to Phys. Rev. Lett. See also
paper QTuB4 in QELS'03 Technical Digest (OSA, Washington, D.C., 2003). This
is a more complete versio
Descending aortic calcification increases renal dysfunction and in-hospital mortality in cardiac surgery patients with intraaortic balloon pump counterpulsation placed perioperatively : a case control study
Introduction: Acute kidney injury (AKI) after cardiac surgery increases length of hospital stay and in-hospital mortality. A significant number of patients undergoing cardiac surgical procedures require perioperative intra-aortic balloon pump (IABP) support. Use of an IABP has been linked to an increased incidence of perioperative renal dysfunction and death. This might be due to dislodgement of atherosclerotic material in the descending thoracic aorta (DTA). Therefore, we retrospectively studied the correlation between DTA atheroma, AKI and in-hospital mortality.
Methods: A total of 454 patients were retrospectively matched to one of four groups: -IABP/-DTA atheroma, +IABP/-DTA atheroma, -IABP/+DTA atheroma, +IABP/+DTA atheroma. Patients were then matched according to presence/absence of DTA atheroma, presence/absence of IABP, performed surgical procedure, age, gender and left ventricular ejection fraction (LVEF). DTA atheroma was assessed through standard transesophageal echocardiography (TEE) imaging studies of the descending thoracic aorta.
Results: Basic patient characteristics, except for age and gender, did not differ between groups. Perioperative AKI in patients with -DTA atheroma/+IABP was 5.1% versus 1.7% in patients with -DTA atheroma/-IABP. In patients with +DTA atheroma/+IABP the incidence of AKI was 12.6% versus 5.1% in patients with +DTA atheroma/-IABP. In-hospital mortality in patients with +DTA atheroma/-IABP was 3.4% versus 8.4% with +DTA atheroma/+IABP. In patients with +DTA atheroma/+IABP in hospital mortality was 20.2% versus 6.4% with +DTA atheroma/-IABP. Multivariate logistic regression identified DTA atheroma > 1 mm (P = *0.002, odds ratio (OR) = 4.13, confidence interval (CI) = 1.66 to 10.30), as well as IABP support (P = *0.015, OR = 3.04, CI = 1.24 to 7.45) as independent predictors of perioperative AKI and increased in-hospital mortality. DTA atheroma in conjunction with IABP significantly increased the risk of developing acute kidney injury (P = 0.0016) and in-hospital mortality (P = 0.0001) when compared to control subjects without IABP and without DTA atheroma.
Conclusions: Perioperative IABP and DTA atheroma are independent predictors of perioperative AKI and in-hospital mortality. Whether adding an IABP in patients with severe DTA calcification increases their risk of developing AKI and mortality postoperatively cannot be clearly answered in this study. Nevertheless, when IABP and DTA are combined, patients are more likely to develop AKI and to die postoperatively in comparison to patients without IABP and DTA atheroma
Soliton Squeezing in a Mach-Zehnder Fiber Interferometer
A new scheme for generating amplitude squeezed light by means of soliton
self-phase modulation is experimentally demonstrated. By injecting 180-fs
pulses into an equivalent Mach-Zehnder fiber interferometer, a maximum noise
reduction of dB is obtained ( dB when corrected for
losses). The dependence of noise reduction on the interferometer splitting
ratio and fiber length is studied in detail.Comment: 5 pages, 4 figure
Intermediate progenitors support migration of neural stem cells into dentate gyrus outer neurogenic niches.
The hippocampal dentate gyrus (DG) is a unique brain region maintaining neural stem cells (NCSs) and neurogenesis into adulthood. We used multiphoton imaging to visualize genetically defined progenitor subpopulations in live slices across key stages of mouse DG development, testing decades old static models of DG formation with molecular identification, genetic-lineage tracing, and mutant analyses. We found novel progenitor migrations, timings, dynamic cell-cell interactions, signaling activities, and routes underlie mosaic DG formation. Intermediate progenitors (IPs, Tbr2+) pioneered migrations, supporting and guiding later emigrating NSCs (Sox9+) through multiple transient zones prior to converging at the nascent outer adult niche in a dynamic settling process, generating all prenatal and postnatal granule neurons in defined spatiotemporal order. IPs (Dll1+) extensively targeted contacts to mitotic NSCs (Notch active), revealing a substrate for cell-cell contact support during migrations, a developmental feature maintained in adults. Mouse DG formation shares conserved features of human neocortical expansion
Quantum Noise Randomized Ciphers
We review the notion of a classical random cipher and its advantages. We
sharpen the usual description of random ciphers to a particular mathematical
characterization suggested by the salient feature responsible for their
increased security. We describe a concrete system known as AlphaEta and show
that it is equivalent to a random cipher in which the required randomization is
effected by coherent-state quantum noise. We describe the currently known
security features of AlphaEta and similar systems, including lower bounds on
the unicity distances against ciphertext-only and known-plaintext attacks. We
show how AlphaEta used in conjunction with any standard stream cipher such as
AES (Advanced Encryption Standard) provides an additional, qualitatively
different layer of security from physical encryption against known-plaintext
attacks on the key. We refute some claims in the literature that AlphaEta is
equivalent to a non-random stream cipher.Comment: Accepted for publication in Phys. Rev. A; Discussion augmented and
re-organized; Section 5 contains a detailed response to 'T. Nishioka, T.
Hasegawa, H. Ishizuka, K. Imafuku, H. Imai: Phys. Lett. A 327 (2004) 28-32
/quant-ph/0310168' & 'T. Nishioka, T. Hasegawa, H. Ishizuka, K. Imafuku, H.
Imai: Phys. Lett. A 346 (2005) 7
- …
