133 research outputs found

    Low Mass Gluino within the Sparticle Landscape, Implications for Dark Matter, and Early Discovery Prospects at LHC-7

    Full text link
    We analyze supergravity models that predict a low mass gluino within the landscape of sparticle mass hierarchies. The analysis includes a broad class of models that arise in minimal and in non-minimal supergravity unified frameworks and in extended models with additional U(1)XnU(1)^n_X hidden sector gauge symmetries. Gluino masses in the range (350−700)(350-700) GeV are investigated. Masses in this range are promising for early discovery at the LHC at s=7\sqrt s =7 TeV (LHC-7). The models exhibit a wide dispersion in the gaugino-Higgsino eigencontent of their LSPs and in their associated sparticle mass spectra. A signature analysis is carried out and the prominent discovery channels for the models are identified with most models needing only ∼1fb−1\sim 1 \rm fb^{-1} for discovery at LHC-7. In addition, significant variations in the discovery capability of the low mass gluino models are observed for models in which the gluino masses are of comparable size due to the mass splittings in different models and the relative position of the light gluino within the various sparticle mass hierarchies. The models are consistent with the current stringent bounds from the Fermi-LAT, CDMS-II, XENON100, and EDELWEISS-2 experiments. A subclass of these models, which include a mixed-wino LSP and a Higgsino LSP, are also shown to accommodate the positron excess seen in the PAMELA satellite experiment.Comment: 37 pages, 8 figures, Published in PR

    Suppression of Higgsino mediated proton decay by cancellations in GUTs and strings

    Full text link
    A mechanism for the enhancement for proton lifetime in supersymmetric/supergravity (SUSY/SUGRA) grand unified theories (GUTs) and in string theory models is discussed where Higgsino mediated proton decay arising from color triplets (anti-triplets) with charges Q=−1/3(1/3)Q=-1/3(1/3) and Q=−4/3(4/3)Q=-4/3(4/3) is suppressed by an internal cancellation due to contributions from different sources. We exhibit the mechanism for an SU(5) model with 45H+45ˉH45_H+\bar{45}_H Higgs multiplets in addition to the usual Higgs structure of the minimal model. This model contains both Q=−1/3(1/3)Q=-1/3(1/3) and Q=−4/3(4/3)Q=-4/3(4/3) Higgs color triplets (anti-triplets) and simple constraints allow for a complete suppression of Higgsino mediated proton decay. Suppression of proton decay in an SU(5) model with Planck scale contributions is also considered. The suppression mechanism is then exhibited for an SO(10) model with a unified Higgs structure involving 144H+144ˉH144_H+\bar{144}_H representations.The SU(5) decomposition of 144H+144ˉH144_H+\bar{144}_H contains 5H+5ˉH5_H+\bar 5_H and 45H+45ˉH45_H+\bar{45}_H and the cancellation mechanism arises among these contributions which mirrror the SU(5) case. The cancellation mechanism appears to be more generally valid for a larger class of unification models. Specifically the cancellation mechanism may play a role in string model constructions to suppress proton decay from dimension five operators. The mechanism allows for the suppression of proton decay consistent with current data allowing for the possibility that proton decay may be visible in the next round of nucleon stability experiment.Comment: 26 pages, no figures. Revtex 4. To appear in Physical Review

    Gluino NLSP, Dark Matter via Gluino Coannihilation, and LHC Signatures

    Full text link
    The possibility that the gluino is the next to the lightest supersymmetric particle (NLSP) is discussed and it is shown that this situation arises in nonuniversal SUGRA models within a significant part of the parameter space compatible with all known experimental bounds. It is then shown that the gluino NLSP (GNLSP) models lead to a compressed sfermion spectrum with the sleptons often heavier than the squarks at least for the first two generations. The relic density here is governed by gluino coannihilation which is responsible for a relatively small mass splitting between the gluino and the neutralino masses. Thus the GNLSP class of models is very predictive first because the SUSY production cross sections at the LHC are dominated by gluino production and second because the gluino production itself proceeds dominantly through a single channel which allows for a direct determination of the gluino mass and an indirect determination of the neutralino mass due to a linear relation between these two masses which is highly constrained by coannihilation. A detailed analysis of these models shows that the jet production and tagged b-jets from the gluino production can be discriminated from the standard model background with appropriate cuts. It is found that the GNLSP models can be tested with just 10 fb−1^{-1} of integrated luminosity and may therefore be checked with low luminosity runs in the first data at the LHC. Thus if a GNLSP model is realized, the LHC will turn into a gluino factory through a profuse production of gluinos with typically only a small fraction ≲5\lesssim 5% of total SUSY events arising from other production modes over the allowed GNLSP model parameter space.Comment: 33 pages, 8 figures, accepted for publication in Physical Review

    Effects of Extra Space-time Dimensions on the Fermi Constant

    Get PDF
    Effects of Kaluza-Klein excitations associated with extra dimensions with large radius compactifications on the Fermi constant are explored. It is shown that the current precision determinations of the Fermi constant, of the fine structure constant, and of the W and Z mass put stringent constraints on the compactification radius. The analysis excludes one extra space time dimension below ∼1.6\sim 1.6 TeV, and excludes 2, 3 and 4 extra space dimensions opening simultaneously below ∼\sim 3.5 TeV, 5.7 TeV and 7.8 TeV at the 9090% CL. Implications of these results for future collider experiments are discussed.Comment: 12 pages including one figur

    Status of the LUX Dark Matter Search

    Full text link
    The Large Underground Xenon (LUX) dark matter search experiment is currently being deployed at the Homestake Laboratory in South Dakota. We will highlight the main elements of design which make the experiment a very strong competitor in the field of direct detection, as well as an easily scalable concept. We will also present its potential reach for supersymmetric dark matter detection, within various timeframes ranging from 1 year to 5 years or more.Comment: 4 pages, in proceedings of the SUSY09 conferenc
    • …
    corecore