8,322 research outputs found
Secondary and compound concentrators for parabolic dish solar thermal power systems
A secondary optical element may be added to a parabolic dish solar concentrator to increase the geometric concentration ratio attainable at a given intercept factor. This secondary may be a Fresnel lens or a mirror, such as a compound elliptic concentrator or a hyperbolic trumpet. At a fixed intercept factor, higher overall geometric concentration may be obtainable with a long focal length primary and a suitable secondary matched to it. Use of a secondary to increase the geometric concentration ratio is more likely to e worthwhile if the receiver temperature is high and if errors in the primary are large. Folding the optical path with a secondary may reduce cost by locating the receiver and power conversion equipment closer to the ground and by eliminating the heavy structure needed to support this equipment at the primary focus. Promising folded-path configurations include the Ritchey-Chretien and perhaps some three element geometries. Folding the optical path may be most useful in systems that provide process heat
Fracture through cavitation in a metallic glass
The fracture surfaces of a Zr-based bulk metallic glass exhibit exotic multi-affine isotropic scaling properties. The study of the mismatch between the two facing fracture surfaces as a function of their distance shows that fracture occurs mostly through the growth and coalescence of damage cavities. The fractal nature of these damage cavities is shown to control the roughness of the fracture surfaces
Formation of long-lived, scarlike modes near avoided resonance crossings in optical microcavities
We study the formation of long-lived states near avoided resonance crossings
in open systems. For three different optical microcavities (rectangle, ellipse,
and semi-stadium) we provide numerical evidence that these states are localized
along periodic rays, resembling scarred states in closed systems. Our results
shed light on the morphology of long-lived states in open mesoscopic systems.Comment: 4 pages, 5 figures (in reduced quality), to appear in Phys. Rev. Let
Effect of strain rate on the yielding mechanism of amorphous metal foam
Stochastic amorphous Pd_(43)Ni_(10)Cu_(27)P_(20) foams were tested in quasistatic and dynamic loading. The strength/porosity relations show distinct slopes for the two loading conditions, suggesting a strain-rate-induced change in the foam yielding mechanism. The strength/porosity correlation of the dynamic test data along with microscopy assessments support that dynamic foam yielding is dominated by plasticity rather than elastic buckling, the mechanism previously identified to control quasistatic yielding. The strain-rate-induced shift in the foam yielding mechanism is attributed to the rate of loading approaching the rate of sound wave propagation across intracellular membranes, thereby suppressing elastic buckling and promoting plastic yielding
Finding bridges in packings of colloidal spheres
We identify putative load-bearing structures (bridges) in experimental colloidal systems studied by confocal microscopy. Bridges are co-operative structures that have been used to explain stability and inhomogeneous force transmission in simulated granular packings with a range of densities. We show that bridges similar to those found in granular simulations are present in real experimental colloidal packings. We describe critically the bridge-finding procedure for real experimental data and propose a new criterion-Lowest Mean Squared Separation (LSQS)-for selecting optimum stabilisations
Glasses in hard spheres with short-range attraction
We report a detailed experimental study of the structure and dynamics of
glassy states in hard spheres with short-range attraction. The system is a
suspension of nearly-hard-sphere colloidal particles and non-adsorbing linear
polymer which induces a depletion attraction between the particles. Observation
of crystallization reveals a re-entrant glass transition. Static light
scattering shows a continuous change in the static structure factors upon
increasing attraction. Dynamic light scattering results, which cover 11 orders
of magnitude in time, are consistent with the existence of two distinct kinds
of glasses, those dominated by inter-particle repulsion and caging, and those
dominated by attraction. Samples close to the `A3 point' predicted by mode
coupling theory for such systems show very slow, logarithmic dynamics.Comment: 22 pages, 18 figure
- …
