782 research outputs found
Noninvasive ¹³C-octanoic acid breath test shows delayed gastric emptying in patients with amyotrophic lateral sclerosis
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disorder characterized by progressive loss of motor neurons. However, ALS has been recognized to also involve non-motor systems. Subclinical involvement of the autonomic system in ALS has been described. The recently developed C-13-octanoic acid breath test allows the noninvasive measurement of gastric emptying. With this new technique we investigated 18 patients with ALS and 14 healthy volunteers. None of the patients had diabetes mellitus or other disorders known to cause autonomic dysfunction. The participants received a solid standard test meal labeled with C-13-octanoic acid. Breath samples were taken at 15-min intervals for 5 h and were analyzed for (CO2)-C-13 by isotope selective nondispersive infrared spectrometry. Gastric emptying peak time (t(peak)) and emptying half time (t(1/2)) were determined. All healthy volunteers displayed normal gastric emptying with a mean emptying t(1/2) of 138 +/- 34 (range 68-172) min. Gastric emptying was delayed (t(1/2) > 160 min) in 15 of 18 patients with ALS. Emptying t(1/2) in ALS patients was 218 +/- 48 (range 126-278) min (p < 0.001). These results are compatible with autonomic involvement in patients with ALS, causing delayed gastric emptying of solids and encouraging the theory that ALS is a multisystem disease rather than a disease of the motor neurons only
Serum levels of matrix metalloproteinases-2 and-9 and their tissue inhibitors in inflammatory neuromuscular disorders
We monitored serum levels of matrix metalloproteinases (MMPs) and their tissue inhibitors (TIMPs) before and during intravenously applied immunoglobulin (IVIG) therapy in 33 patients with chronic immune-mediated neuropathies and myopathies and 15 controls. Baseline MMP-2 and TIMP-2 serum levels were lower and MMP-9 and TIMP-1 serum levels higher in all patients compared to age-matched controls. Eight days after IVIG treatment, MMP-2, TIMP-2, and TIMP-1 serum levels increased, while MMP-9 serum levels decreased, indicating tissue repair. After 60 days, MMP-9 levels increased, MMP-2 approached normal levels, while TIMP-1 and TIMP-2 serum levels were below day 8 levels, indicating relapsing tissue damage. Comparing the MMP/TIMP results with the clinical courses, IVIG treatment tended to change MMP/TIMP levels in a way that paralleled clinical improvement and relapse. In sum, during a distinct time period, IVIG therapy seems to be able to modulate VIMP-mediated tissue repair. Copyright (c) 2006 S. Karger AG, Basel
Influence of Bragg Scattering on Plasmon Spectra of Aluminum
Plasmon spectrometry is an important method to obtain information on many-body effects in the solid state. The plasmon halfwidth and the dispersion coefficient are well investigated for a number of materials, and compare well with quantum mechanical predictions. The excitation strength of the coherent double plasmon has been investigated to a lesser extent. Experimental results are at variance with one another and with theory. This is partly due to the plural scattering which masks the coherent double plasmon.
Accurate analysis of plasmon spectra requires not only to remove the inelastic plural processes but also to take into account the coupling between Bragg and plasmon scattering at high scattering angles. It is shown that the excitation strength of the coherent double plasmon in forward direction falls below the detection limit when this correction is applied
How to measure the efficiency of bioenergy crops compared to forestation
The climate mitigation potential of terrestrial carbon dioxide removal (tCDR) methods depends critically on the timing and magnitude of their implementation. In our study, we introduce different measures of efficiency to evaluate the carbon removal potential of afforestation and reforestation (AR) and bioenergy with carbon capture and storage (BECCS) under the low-emission scenario SSP1-2.6 and in the same area. We define efficiency as the potential to sequester carbon in the biosphere in a specific area or store carbon in geological reservoirs or woody products within a certain time. In addition to carbon capture and storage (CCS), we consider the effects of fossil fuel substitution (FFS) through the usage of bioenergy for energy production, which increases the efficiency through avoided CO2 emissions. These efficiency measures reflect perspectives regarding climate mitigation, carbon sequestration, land availability, spatiotemporal dynamics, and the technological progress in FFS and CCS. We use the land component JSBACH3.2 of the Max Planck Institute Earth System Model (MPI-ESM) to calculate the carbon sequestration potential in the biosphere using an updated representation of second-generation bioenergy plants such as Miscanthus. Our spatially explicit modeling results reveal that, depending on FFS and CCS levels, BECCS sequesters 24–158 GtC by 2100, whereas AR methods sequester around 53 GtC on a global scale, with BECCS having an advantage in the long term. For our specific setup, BECCS has a higher potential in the South American grasslands and southeast Africa, whereas AR methods are more suitable in southeast China. Our results reveal that the efficiency of BECCS to sequester carbon compared to “nature-based solutions” like AR will depend critically on the upscaling of CCS facilities, replacing fossil fuels with bioenergy in the future, the time frame, and the location of tCDR deployment.</p
Past and future carbon fluxes from land use change, shifting cultivation and wood harvest
Carbon emissions from anthropogenic land use (LU) and land use change (LUC) are quantified with a Dynamic Global Vegetation Model for the past and the 21st century following Representative Concentration Pathways (RCPs). Wood harvesting and parallel abandonment and expansion of agricultural land in areas of shifting cultivation are explicitly simulated (gross LUC) based on the Land Use Harmonization (LUH) dataset and a proposed alternative method that relies on minimum input data and generically accounts for gross LUC. Cumulative global LUC emissions are 72 GtC by 1850 and 243 GtC by 2004 and 27–151 GtC for the next 95 yr following the different RCP scenarios. The alternative method reproduces results based on LUH data with full transition information within <0.1 GtC/yr over the last decades and bears potential for applications in combination with other LU scenarios. In the last decade, shifting cultivation and wood harvest within remaining forests including slash each contributed 19% to the mean annual emissions of 1.2 GtC/yr. These factors, in combination with amplification effects under elevated CO2, contribute substantially to future emissions from LUC in all RCPs
Combined ultrasonographic and neurographic examination: A new technique to evaluate phrenic nerve function
- …
