179 research outputs found

    DNA damage predicts prognosis and treatment response in colorectal liver metastases superior to immunogenic cell death and T cells

    Get PDF
    Preclinical models indicate that DNA damage induces type I interferon (IFN), which is crucial for the induction of an anti-tumor immune response. In human cancers, however, the association between DNA damage and an immunogenic cell death (ICD), including the release and sensing of danger signals, the subsequent ER stress response and a functional IFN system, is less clear. Methods: Neoadjuvant-treated colorectal liver metastases (CLM) patients, undergoing liver resection in with a curative intent, were retrospectively enrolled in this study (n=33). DNA damage (gammaH2AX), RNA and DNA sensors (RIG-I, DDX41, cGAS, STING), ER stress response (p-PKR, p-eIF2alpha, CALR), type I and type II IFN- induced proteins (MxA, GBP1), mature dendritic cells (CD208), and cytotoxic and memory T cells (CD3, CD8, CD45RO) were investigated by an immunohistochemistry whole-slide tissue scanning approach and further correlated with recurrence-free survival (RFS), overall survival (OS), radiographic and pathologic therapy response. Results: gammaH2AX is a negative prognostic marker for RFS (HR 1.32, 95% CI 1.04-1.69, p=0.023) and OS (HR 1.61, 95% CI 1.23-2.11, p<0.001). A model comprising of DDX41, STING and p-PKR predicts radiographic therapy response (AUC=0.785, p=0.002). gammaH2AX predicts prognosis superior to the prognostic value of CD8. CALR positively correlates with GBP1, CD8 and cGAS. A model consisting of gammaH2AX, p-eIF2alpha, DDX41, cGAS, CD208 and CD45RO predicts pathological therapy response (AUC=0.944, p<0.001). Conclusion: In contrast to preclinical models, DNA damage inversely correlated with ICD and its associated T cell infiltrate and potentially serves as a therapeutic target in CLM

    The prognostic value of estrogen receptor beta and proline-, glutamic acid- and leucine-rich protein 1 (PELP1) expression in ovarian cancer

    Get PDF
    Background: Proline-, glutamic acid-, and leucine-rich protein 1 (PELP1), a coregulator of the estrogen receptors (ERs) alpha and beta, is a potential proto-oncogene in hormone dependent gynecological malignancies. To better understand the role of PELP1 in epithelial ovarian cancer (EOC), the protein expression and prognostic significance of PELP1 was evaluated together with ERalpha and ERbeta in EOC tissues. Methods: The expression of PELP1, ERalpha, and ERbeta was characterized in tumor tissues of 63 EOC patients. The prognostic value was calculated performing log-rank tests and multivariate Cox-Regression analysis. In a second step, validation analysis in an independent set of 86 serous EOC patients was performed. Results: Nuclear PELP1 expression was present in 76.2% of the samples. Prevalence of PELP1 expression in mucinous tumors was significantly lower (37.5%) compared to serous (85.7%) and endometrioid tumors (86.7%). A significant association between PELP1 expression and nuclear ERbeta staining was found (p=0.01). Positive PELP1 expression was associated with better disease-free survival (DFS) (p=0.004) and overall survival (OS) (p=0.04). The combined expression of ERbeta+/PELP1+ revealed an independent association with better DFS (HR 0.3 [0.1-0.7], p=0.004) and OS (HR 0.3 [0.1-0.7], p=0.005). In the validation set, the combined expression of ERbeta+/PELP1+ was not associated with DFS (HR 0.7 [0.4-1.3], p=0.3) and OS (HR 0.7 [0.3-1.4], p=0.3). Conclusion: Positive immunohistochemical staining for the ER coregulator PELP1, alone and in combination with ERbeta, might be of prognostic relevance in EOC.Stefanie Aust, Peter Horak, Dietmar Pils, Sophie Pils, Christoph Grimm, Reinhard Horvat, Dan Tong, Bernd Schmid, Paul Speiser, Alexander Reinthaller, and Stephan Polteraue

    T cell phenotype in paediatric heart transplant recipients

    Get PDF
    Paediatric heart transplantation recipients suffer an increased incidence of infectious, autoimmune and allergic problems. The relative roles of thymus excision and immunosuppressive treatments in contributing to these sequelae are not clear. We compared the immunological phenotypes of 25 heart transplant recipients (Tx), 10 children who underwent thymus excision during non-transplantation cardiac surgery (TE) and 25 age range–matched controls, in two age bands: 1-9 and 10-16 years. Significant differences from controls were seen mainly in the younger age band with Tx showing lower CD3 and CD4 cell counts whilst TE showed lower CD8 cell counts. Naïve T cell and recent thymic emigrant proportions and counts were significantly lower than controls in both groups in the lower age band. T cell recombination excision circle (TREC) levels were lower than controls in both groups in both age bands. There were no differences in regulatory T cells, but in those undergoing thymus excision in infancy, their proportions were higher in TE than Tx, a possible direct effect of immunosuppression. T cell receptor V beta spectratyping showed fewer peaks in both groups than in controls (predominantly in the older age band). Thymus excision in infancy was associated with lower CD8 cell counts and higher proportions of Tregs in TE compared to Tx. These data are consistent with thymus excision, particularly in infancy, being the most important influence on immunological phenotype after heart transplantation

    Gene expression of PMP22 is an independent prognostic factor for disease-free and overall survival in breast cancer patients

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Gene expression of peripheral myelin protein 22 (<it>PMP22</it>) and the epithelial membrane proteins (<it>EMPs</it>) was found to be differentially expressed in invasive and non-invasive breast cell lines in a previous study. We want to evaluate the prognostic impact of the expression of these genes on breast cancer.</p> <p>Methods</p> <p>In a retrospective multicenter study, gene expression of <it>PMP22 </it>and the <it>EMPs </it>was measured in 249 primary breast tumors by real-time PCR. Results were statistically analyzed together with clinical data.</p> <p>Results</p> <p>In univariable Cox regression analyses PMP22 and the EMPs were not associated with disease-free survival or tumor-related mortality. However, multivariable Cox regression revealed that patients with higher than median <it>PMP22 </it>gene expression have a 3.47 times higher risk to die of cancer compared to patients with equal values on clinical covariables but lower <it>PMP22 </it>expression. They also have a 1.77 times higher risk to relapse than those with lower <it>PMP22 </it>expression. The proportion of explained variation in overall survival due to <it>PMP22 </it>gene expression was 6.5% and thus PMP22 contributes equally to prognosis of overall survival as nodal status and estrogen receptor status. Cross validation demonstrates that 5-years survival rates can be refined by incorporating <it>PMP22 </it>into the prediction model.</p> <p>Conclusions</p> <p><it>PMP22 </it>gene expression is a novel independent prognostic factor for disease-free survival and overall survival for breast cancer patients. Including it into a model with established prognostic factors will increase the accuracy of prognosis.</p

    Accuracy of Protein-Protein Binding Sites in High-Throughput Template-Based Modeling

    Get PDF
    The accuracy of protein structures, particularly their binding sites, is essential for the success of modeling protein complexes. Computationally inexpensive methodology is required for genome-wide modeling of such structures. For systematic evaluation of potential accuracy in high-throughput modeling of binding sites, a statistical analysis of target-template sequence alignments was performed for a representative set of protein complexes. For most of the complexes, alignments containing all residues of the interface were found. The full interface alignments were obtained even in the case of poor alignments where a relatively small part of the target sequence (as low as 40%) aligned to the template sequence, with a low overall alignment identity (<30%). Although such poor overall alignments might be considered inadequate for modeling of whole proteins, the alignment of the interfaces was strong enough for docking. In the set of homology models built on these alignments, one third of those ranked 1 by a simple sequence identity criteria had RMSD<5 Å, the accuracy suitable for low-resolution template free docking. Such models corresponded to multi-domain target proteins, whereas for single-domain proteins the best models had 5 Å<RMSD<10 Å, the accuracy suitable for less sensitive structure-alignment methods. Overall, ∼50% of complexes with the interfaces modeled by high-throughput techniques had accuracy suitable for meaningful docking experiments. This percentage will grow with the increasing availability of co-crystallized protein-protein complexes

    Analysis of congenital disorder of glycosylation-Id in a yeast model system shows diverse site-specific under-glycosylation of glycoproteins

    Get PDF
    Asparagine-linked glycosylation is a common post translational modification of proteins in eukaryotes. Mutations in the human ALG3 gene cause changed levels and altered glycan structures on mature glycoproteins and are the cause of a severe congenital disorder of glycosylation (CDG-Id). Diverse glycoproteins are also under-glycosylated in Saccharomyces cerevisae alg3 mutants. Here we analyzed site-specific glycosylation occupancy in this yeast model system using peptide-N-glycosidase F to label glycosylation sites with an asparagine-aspartate conversion that creates a new endoproteinase AspN cleavage site, followed by proteolytic digestion, and detection of peptides and glycopeptides by LC-ESI-MS/MS. We used this analytical method to identify and measure site specific glycosylation occupancy in alg3 mutant and wild type yeast strains. We found decreased site specific N-glycosylation occupancy in the alg3 knockout strain preferentially at Asn-Xaa-Ser sequences located in secondary structural elements, features previously associated with poor glycosylation efficiency. Furthermore, we identified 26 previously experimentally unverified glycosylation sites. Our results provide insights into the underlying mechanisms of disease in CDG-Id, and our methodology will be useful in site specific glycosylation analysis in many model systems and clinical applications

    A multidisciplinary, multifactorial intervention program reduces postoperative falls and injuries after femoral neck fracture

    Get PDF
    INTRODUCTION: This study evaluates whether a postoperative multidisciplinary, intervention program, including systematic assessment and treatment of fall risk factors, active prevention, detection, and treatment of postoperative complications, could reduce inpatient falls and fall-related injuries after a femoral neck fracture. METHODS: A randomized, controlled trial at the orthopedic and geriatric departments at Umeå University Hospital, Sweden, included 199 patients with femoral neck fracture, aged  ≥70 years. RESULTS: Twelve patients fell 18 times in the intervention group compared with 26 patients suffering 60 falls in the control group. Only one patient with dementia fell in the intervention group compared with 11 in the control group. The crude postoperative fall incidence rate was 6.29/1,000 days in the intervention group vs 16.28/1,000 days in the control group. The incidence rate ratio was 0.38 [95% confidence interval (CI): 0.20 – 0.76, p = 0.006] for the total sample and 0.07 (95% CI: 0.01–0.57, p=0.013) among patients with dementia. There were no new fractures in the intervention group but four in the control group. CONCLUSION: A team applying comprehensive geriatric assessment and rehabilitation, including prevention, detection, and treatment of fall risk factors, can successfully prevent inpatient falls and injuries, even in patients with dementia

    In ovarian cancer the prognostic influence of HER2/neu is not dependent on the CXCR4/SDF-1 signalling pathway

    Get PDF
    HER2/neu overexpression is a driving force in the carcinogenesis of several human cancers. In breast cancer the prognostic influence of HER2/neu was shown to be at least partly based on increased metastatic potential mediated by the chemokine–chemokine receptor pair SDF-1(CXCL12)/CXCR4. We wanted to evaluate the influence of HER2/neu on ovarian cancer prognosis and to investigate whether compromised survival would correlate with CXCR4 expression and/or SDF-1 abundance. Therefore, we analysed HER2/neu, CXCR4, and SDF-1 in 148 ovarian tumour samples by means of immunohistochemistry on tissue microarrays. Overexpression of HER2/neu was found in 27.6% of ovarian cancer tissues and in 15% of ovarian borderline tumours. In ovarian cancer patients, overexpression of HER2/neu correlated closely with overall survival (univariate hazard ratio (HR) 2.59, P=0.005; multiple corrected HR 1.92, P=0.074). In contrast, CXCR4 expression and SDF-1 abundance had no impact on overall survival, and both parameters were not correlated with HER2/neu expression. As expected, cytoplasmic CXCR4 expression and SDF-1 abundance correlated closely (P<0.0001). Our results confirm a univariate influence of HER2/neu expression on overall survival, which was completely independent of the expression of CXCR4 and the abundance of SDF-1, implying significant differences between the HER2/neu downstream pathways in ovarian cancer compared with breast cancer

    8p22 MTUS1 Gene Product ATIP3 Is a Novel Anti-Mitotic Protein Underexpressed in Invasive Breast Carcinoma of Poor Prognosis

    Get PDF
    BACKGROUND: Breast cancer is a heterogeneous disease that is not totally eradicated by current therapies. The classification of breast tumors into distinct molecular subtypes by gene profiling and immunodetection of surrogate markers has proven useful for tumor prognosis and prediction of effective targeted treatments. The challenge now is to identify molecular biomarkers that may be of functional relevance for personalized therapy of breast tumors with poor outcome that do not respond to available treatments. The Mitochondrial Tumor Suppressor (MTUS1) gene is an interesting candidate whose expression is reduced in colon, pancreas, ovary and oral cancers. The present study investigates the expression and functional effects of MTUS1 gene products in breast cancer. METHODS AND FINDINGS: By means of gene array analysis, real-time RT-PCR and immunohistochemistry, we show here that MTUS1/ATIP3 is significantly down-regulated in a series of 151 infiltrating breast cancer carcinomas as compared to normal breast tissue. Low levels of ATIP3 correlate with high grade of the tumor and the occurrence of distant metastasis. ATIP3 levels are also significantly reduced in triple negative (ER- PR- HER2-) breast carcinomas, a subgroup of highly proliferative tumors with poor outcome and no available targeted therapy. Functional studies indicate that silencing ATIP3 expression by siRNA increases breast cancer cell proliferation. Conversely, restoring endogenous levels of ATIP3 expression leads to reduced cancer cell proliferation, clonogenicity, anchorage-independent growth, and reduces the incidence and size of xenografts grown in vivo. We provide evidence that ATIP3 associates with the microtubule cytoskeleton and localizes at the centrosomes, mitotic spindle and intercellular bridge during cell division. Accordingly, live cell imaging indicates that ATIP3 expression alters the progression of cell division by promoting prolonged metaphase, thereby leading to a reduced number of cells ungergoing active mitosis. CONCLUSIONS: Our results identify for the first time ATIP3 as a novel microtubule-associated protein whose expression is significantly reduced in highly proliferative breast carcinomas of poor clinical outcome. ATIP3 re-expression limits tumor cell proliferation in vitro and in vivo, suggesting that this protein may represent a novel useful biomarker and an interesting candidate for future targeted therapies of aggressive breast cancer
    corecore