871 research outputs found
A New Simulated Annealing Algorithm for the Multiple Sequence Alignment Problem: The approach of Polymers in a Random Media
We proposed a probabilistic algorithm to solve the Multiple Sequence
Alignment problem. The algorithm is a Simulated Annealing (SA) that exploits
the representation of the Multiple Alignment between sequences as a
directed polymer in dimensions. Within this representation we can easily
track the evolution in the configuration space of the alignment through local
moves of low computational cost. At variance with other probabilistic
algorithms proposed to solve this problem, our approach allows for the creation
and deletion of gaps without extra computational cost. The algorithm was tested
aligning proteins from the kinases family. When D=3 the results are consistent
with those obtained using a complete algorithm. For where the complete
algorithm fails, we show that our algorithm still converges to reasonable
alignments. Moreover, we study the space of solutions obtained and show that
depending on the number of sequences aligned the solutions are organized in
different ways, suggesting a possible source of errors for progressive
algorithms.Comment: 7 pages and 11 figure
Comparison of Spectra in Unsequenced Species
International audienceWe introduce a new algorithm for the mass spectromet- ric identication of proteins. Experimental spectra obtained by tandem MS/MS are directly compared to theoretical spectra generated from pro- teins of evolutionarily closely related organisms. This work is motivated by the need of a method that allows the identication of proteins of unsequenced species against a database containing proteins of related organisms. The idea is that matching spectra of unknown peptides to very similar MS/MS spectra generated from this database of annotated proteins can lead to annotate unknown proteins. This process is similar to ortholog annotation in protein sequence databases. The difficulty with such an approach is that two similar peptides, even with just one mod- ication (i.e. insertion, deletion or substitution of one or several amino acid(s)) between them, usually generate very dissimilar spectra. In this paper, we present a new dynamic programming based algorithm: Packet- SpectralAlignment. Our algorithm is tolerant to modications and fully exploits two important properties that are usually not considered: the notion of inner symmetry, a relation linking pairs of spectrum peaks, and the notion of packet inside each spectrum to keep related peaks together. Our algorithm, PacketSpectralAlignment is then compared to SpectralAlignment [1] on a dataset of simulated spectra. Our tests show that PacketSpectralAlignment behaves better, in terms of results and execution tim
Expected length of the longest common subsequence for large alphabets
We consider the length L of the longest common subsequence of two randomly
uniformly and independently chosen n character words over a k-ary alphabet.
Subadditivity arguments yield that the expected value of L, when normalized by
n, converges to a constant C_k. We prove a conjecture of Sankoff and Mainville
from the early 80's claiming that C_k\sqrt{k} goes to 2 as k goes to infinity.Comment: 14 pages, 1 figure, LaTe
Safe and complete contig assembly via omnitigs
Contig assembly is the first stage that most assemblers solve when
reconstructing a genome from a set of reads. Its output consists of contigs --
a set of strings that are promised to appear in any genome that could have
generated the reads. From the introduction of contigs 20 years ago, assemblers
have tried to obtain longer and longer contigs, but the following question was
never solved: given a genome graph (e.g. a de Bruijn, or a string graph),
what are all the strings that can be safely reported from as contigs? In
this paper we finally answer this question, and also give a polynomial time
algorithm to find them. Our experiments show that these strings, which we call
omnitigs, are 66% to 82% longer on average than the popular unitigs, and 29% of
dbSNP locations have more neighbors in omnitigs than in unitigs.Comment: Full version of the paper in the proceedings of RECOMB 201
Thermodynamics of protein folding: a random matrix formulation
The process of protein folding from an unfolded state to a biologically
active, folded conformation is governed by many parameters e.g the sequence of
amino acids, intermolecular interactions, the solvent, temperature and chaperon
molecules. Our study, based on random matrix modeling of the interactions,
shows however that the evolution of the statistical measures e.g Gibbs free
energy, heat capacity, entropy is single parametric. The information can
explain the selection of specific folding pathways from an infinite number of
possible ways as well as other folding characteristics observed in computer
simulation studies.Comment: 21 Pages, no figure
Parking functions, labeled trees and DCJ sorting scenarios
In genome rearrangement theory, one of the elusive questions raised in recent
years is the enumeration of rearrangement scenarios between two genomes. This
problem is related to the uniform generation of rearrangement scenarios, and
the derivation of tests of statistical significance of the properties of these
scenarios. Here we give an exact formula for the number of double-cut-and-join
(DCJ) rearrangement scenarios of co-tailed genomes. We also construct effective
bijections between the set of scenarios that sort a cycle and well studied
combinatorial objects such as parking functions and labeled trees.Comment: 12 pages, 3 figure
Limited Lifespan of Fragile Regions in Mammalian Evolution
An important question in genome evolution is whether there exist fragile
regions (rearrangement hotspots) where chromosomal rearrangements are happening
over and over again. Although nearly all recent studies supported the existence
of fragile regions in mammalian genomes, the most comprehensive phylogenomic
study of mammals (Ma et al. (2006) Genome Research 16, 1557-1565) raised some
doubts about their existence. We demonstrate that fragile regions are subject
to a "birth and death" process, implying that fragility has limited
evolutionary lifespan. This finding implies that fragile regions migrate to
different locations in different mammals, explaining why there exist only a few
chromosomal breakpoints shared between different lineages. The birth and death
of fragile regions phenomenon reinforces the hypothesis that rearrangements are
promoted by matching segmental duplications and suggests putative locations of
the currently active fragile regions in the human genome
Applying a User-centred Approach to Interactive Visualization Design
Analysing users in their context of work and finding out how and why they use different information resources is essential to provide interactive visualisation systems that match their goals and needs. Designers should actively involve the intended users throughout the whole process. This chapter presents a user-centered approach for the design of interactive visualisation systems. We describe three phases of the iterative visualisation design process: the early envisioning phase, the global specification hase, and the detailed specification phase. The whole design cycle is repeated until some criterion of success is reached. We discuss different techniques for the analysis of users, their tasks and domain. Subsequently, the design of prototypes and evaluation methods in visualisation practice are presented. Finally, we discuss the practical challenges in design and evaluation of collaborative visualisation environments. Our own case studies and those of others are used throughout the whole chapter to illustrate various approaches
Group testing with Random Pools: Phase Transitions and Optimal Strategy
The problem of Group Testing is to identify defective items out of a set of
objects by means of pool queries of the form "Does the pool contain at least a
defective?". The aim is of course to perform detection with the fewest possible
queries, a problem which has relevant practical applications in different
fields including molecular biology and computer science. Here we study GT in
the probabilistic setting focusing on the regime of small defective probability
and large number of objects, and . We construct and
analyze one-stage algorithms for which we establish the occurrence of a
non-detection/detection phase transition resulting in a sharp threshold, , for the number of tests. By optimizing the pool design we construct
algorithms whose detection threshold follows the optimal scaling . Then we consider two-stages algorithms and analyze their
performance for different choices of the first stage pools. In particular, via
a proper random choice of the pools, we construct algorithms which attain the
optimal value (previously determined in Ref. [16]) for the mean number of tests
required for complete detection. We finally discuss the optimal pool design in
the case of finite
Viral population estimation using pyrosequencing
The diversity of virus populations within single infected hosts presents a
major difficulty for the natural immune response as well as for vaccine design
and antiviral drug therapy. Recently developed pyrophosphate based sequencing
technologies (pyrosequencing) can be used for quantifying this diversity by
ultra-deep sequencing of virus samples. We present computational methods for
the analysis of such sequence data and apply these techniques to pyrosequencing
data obtained from HIV populations within patients harboring drug resistant
virus strains. Our main result is the estimation of the population structure of
the sample from the pyrosequencing reads. This inference is based on a
statistical approach to error correction, followed by a combinatorial algorithm
for constructing a minimal set of haplotypes that explain the data. Using this
set of explaining haplotypes, we apply a statistical model to infer the
frequencies of the haplotypes in the population via an EM algorithm. We
demonstrate that pyrosequencing reads allow for effective population
reconstruction by extensive simulations and by comparison to 165 sequences
obtained directly from clonal sequencing of four independent, diverse HIV
populations. Thus, pyrosequencing can be used for cost-effective estimation of
the structure of virus populations, promising new insights into viral
evolutionary dynamics and disease control strategies.Comment: 23 pages, 13 figure
- …
