1,193 research outputs found
Engineering the Dynamics of Effective Spin-Chain Models for Strongly Interacting Atomic Gases
We consider a one-dimensional gas of cold atoms with strong contact
interactions and construct an effective spin-chain Hamiltonian for a
two-component system. The resulting Heisenberg spin model can be engineered by
manipulating the shape of the external confining potential of the atomic gas.
We find that bosonic atoms offer more flexibility for tuning independently the
parameters of the spin Hamiltonian through interatomic (intra-species)
interaction which is absent for fermions due to the Pauli exclusion principle.
Our formalism can have important implications for control and manipulation of
the dynamics of few- and many-body quantum systems; as an illustrative example
relevant to quantum computation and communication, we consider state transfer
in the simplest non-trivial system of four particles representing
exchange-coupled qubits.Comment: 10 pages including appendix, 3 figures, revised versio
Scalable solid-state quantum processor using subradiant two-atom states
We propose a realization of a scalable, high-performance quantum processor
whose qubits are represented by the ground and subradiant states of effective
dimers formed by pairs of two-level systems coupled by resonant dipole-dipole
interaction. The dimers are implanted in low-temperature solid host material at
controllable nanoscale separations. The two-qubit entanglement either relies on
the coherent excitation exchange between the dimers or is mediated by external
laser fields.Comment: 4 pages, 3 figure
Fluctuations and response in a non-equilibrium micron-sized system
The linear response of non-equilibrium systems with Markovian dynamics
satisfies a generalized fluctuation-dissipation relation derived from time
symmetry and antisymmetry properties of the fluctuations. The relation involves
the sum of two correlation functions of the observable of interest: one with
the entropy excess and the second with the excess of dynamical activity with
respect to the unperturbed process, without recourse to anything but the
dynamics of the system. We illustrate this approach in the experimental
determination of the linear response of the potential energy of a Brownian
particle in a toroidal optical trap. The overdamped particle motion is
effectively confined to a circle, undergoing a periodic potential and driven
out of equilibrium by a non-conservative force. Independent direct and indirect
measurements of the linear response around a non-equilibrium steady state are
performed in this simple experimental system. The same ideas are applicable to
the measurement of the response of more general non-equilibrium micron-sized
systems immersed in Newtonian fluids either in stationary or non-stationary
states and possibly including inertial degrees of freedom.Comment: 12 pages, submitted to J. Stat. Mech., revised versio
- …
