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We consider a one-dimensional gas of cold atoms with strong contact interactions and construct an effective
spin-chain Hamiltonian for a two-component system. The resulting Heisenberg spin model can be engineered by
manipulating the shape of the external confining potential of the atomic gas. We find that bosonic atoms offer more
flexibility for independently tuning the parameters of the spin Hamiltonian through interatomic (intraspecies)
interaction, which is absent for fermions due to the Pauli exclusion principle. Our formalism can have important
implications for control and manipulation of the dynamics of few- and many-body quantum systems; as an
illustrative example relevant to quantum computation and communication, we consider state transfer in the
simplest nontrivial system of four particles representing exchange-coupled qubits.

DOI: 10.1103/PhysRevA.91.023620 PACS number(s): 67.85.−d, 03.67.Lx, 75.10.Pq

I. INTRODUCTION

Interacting many-body quantum systems harbor many
paradigmatic quantum phenomena, such as superconductivity
and quantum magnetism, but are difficult to treat theoretically.
For strong interparticle interactions, the usual perturbative
and many numerical methods are inadequate, requiring
more sophisticated approaches. In the important case of
one spatial dimension, relevant techniques include bosoniza-
tion and the Tomonaga-Luttinger liquid theory [1] and the
numerically powerful density-matrix renormalization group
methods [2,3].

Cold atoms confined in magnetic and optical traps represent
a remarkably clean and versatile system to simulate and study
many-body physics under well-controlled conditions [4–8].
Optical lattice potentials allow realization of the fundamental
Hubbard model [9,10] in which quantum phase transition to
the Mott insulator state with a single atom per lattice site has
been demonstrated [11–13]. The Mott-Hubbard insulator for
a two-component system can be mapped onto the Heisenberg
spin Hamiltonian [14,15], facilitating studies of interacting
spin models responsible for many key features of quantum
magnetism [16]. One-dimensional (1D) systems of strongly
interacting bosons [17–20] and fermions [21,22] have recently
become experimentally accessible.

Experiments to simulate various lattice models with cold
atoms typically involve a weak trapping potential superim-
posed onto the optical lattice [5]. The resulting potential
deviates from an idealized homogeneous lattice, necessitating
the use of the local-density approximation valid for a smooth
trapping potential. Here we study an ensemble of cold
alkali-metal atoms in an external trapping potential having
an arbitrary shape (not necessary lattice) in the longitudinal
direction but tightly confining the atoms in the transverse
direction, realizing thereby an effective 1D system. A pair
of internal atomic states from the ground-state hyperfine
(Zeeman) manifold play the role of the spin-up and spin-down
states. We show that such a 1D ensemble of strongly interacting
atoms with any external confinement can, quite generally, be
represented as a spin chain. The strong contact interatomic

interaction results in spatial localization of individual atoms
within segments along the 1D trap, while the small but finite
overlap between the wave functions of neighboring atoms
leads to an effective spin-exchange interaction. We construct
an effective spin- 1

2 XXZ model for a two-component system
and show that the parameters of the corresponding Hamil-
tonian sensitively depend on the shape of the confinement
potential, quantum statistics of the constituent atoms (bosons
or fermions), and the interatomic interaction (for bosons only).
We note an early relevant publication [23] deriving an effective
Heisenberg spin- 1

2 Hamiltonian for the homogeneous, large-U
Hubbard model at low filling, and the very recent mapping of
a multicomponent cold atomic gas in a harmonic trap onto a
spin-chain model [24].

Our results open several possibilities for engineering
stationary and dynamic quantum states of few- and many-
body systems. As a revealing example amenable to analytic
treatment, we consider the problem of quantum-state trans-
fer [25–27] in the simplest yet nontrivial case of four particles.
We show that by an optimal choice of the trapping potential
and intraspecies interactions between bosonic atoms, perfect
transfer [28–30] of a state of quantum bit, or qubit, between
the two ends of the spin chain can be attained. By contrast,
fermions cannot accommodate perfect state transfer, unless
they are subject to local (effective) magnetic fields.

The paper is organized as follows. In the next section,
we demonstrate the equivalence of the eigenspectra of a
two-component ensemble on N atoms in a 1D trap and a
corresponding spin chain. In Sec. III we study the dependence
of the parameters of the effective spin Hamiltonian on the
shape of the external trapping potential for the atoms. Quantum
dynamics and state transfer in engineered chains of four spins
is illustrated in Sec. IV, followed by concluding remarks in
Sec. V. In the Appendix we present a perturbative derivation
of the energy eigenvalues of the system using the approach
of Ref. [31], analytic expressions for the eigenspectrum of a
four-spin system and dynamics of quantum-state transfer, and
derivation of an effective Heisenberg spin model in a magnetic
field.
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II. EFFECTIVE SPIN-CHAIN MODEL FOR N ATOMS

Consider a 1D system of N↑ particles of one kind (spin up)
and N↓ particles of another kind (spin down) confined by an
external trapping potential V (x) with a characteristic length
scale L. The total Hamiltonian for N = N↑ + N↓ particles is
given by

H =
∑

σ=↑,↓

Nσ∑
i=1

[
h(xσ,i) + gσσ �

2

mL

Nσ∑
i ′>i

δ(xσ,i − xσ,i ′ )

]

+ g↑↓�
2

mL

N↑∑
i=1

N↓∑
i ′=1

δ(x↑,i − x↓,i ′ ), (1)

where

h(x) = − �
2

2m

∂2

∂x2
+ �

2

mL2
V (x/L) (2)

is the single-particle Hamiltonian, m is the mass assumed
equal for all particles, and x↑(↓),i denotes the position of
the ith spin-up (spin-down) particle. Throughout this paper,
we use L and ε ≡ �

2

mL2 as units of length and energy,
respectively. The zero-range interactions are parametrized by
the dimensionless strengths g↑↓ ≡ g > 0 and g↓↓ = g↑↑ ≡ κg

with κ > 0. Hamiltonian (1) applies to both bosons and
fermions, but the total wave function should be symmetric
for bosons and antisymmetric for fermions. As a consequence,
identical (same-spin) fermions do not interact.

We assume strong interactions, g � 1, and inspect the
N -particle wave functions �({x↑,i ,x↓,i ′ }) for various config-
urations {x↑,i ,x↓,i ′ } of atomic positions. There are, in fact,
( N
N↑) = N!

N↑!N↓! distinguishable configurations with different
ordering of atoms (spins), e.g., x↑,1 < x↑,2 < x↓,1 < · · · <

x↑,N↑ < · · · < x↓,N↓ . In the limit of 1/g → 0, the requirement
of finite energy implies that � should vanish whenever the
coordinates of any two particles coincide, x↑(↓),i = x↑(↓),i ′ .
This requirement can only be satisfied if � is proportional to
the Slater determinant wave function for N particles [31,32],
which is a completely antisymmetric superposition of the
products of different single-particle wave functions repre-
senting solutions of the single-particle Hamiltonian h(x). In
what follows, we assume that the potential V supports at
least N bound single-particle levels, which are nondegenerate;
the case of a (partially) degenerate spectrum can be treated
similarly [31].

Consider the Slater determinant wave function �0 com-
posed of the N lowest-energy single-particle eigenfunctions
of h(x). For 1/g → 0, all M(N↑,N↓) ≡ (N↑ + N↓

N↑ ) configu-
rations of atomic coordinates yield the same energy E0

for �0({x↑,i ,x↓,i ′ }). We can expand the general N -particle
eigenfunction as

� =
M(N↑,N↓)∑

k=1

ak 	k�0({: x↑,i ,x↓,i ′ :}), (3)

where {:x↑,i ,x↓,i ′ :} ≡ x↑,1 <. . .< x↑,N↑ < x↓,1 <. . .< x↓,N↓ ,
and the sum is over all the permutations 	k of coordinates.
Note that for 1/g = 0 any set of coefficients ak defines
a legitimate ground state, and we have in fact M(N↑,N↓)
mutually independent ground states of the same energy E0.

For small but finite 1/g, the degeneracy of this ground-state
manifold is lifted, which follows from the Hellmann-Feynman
theorem [31,33]:

∂E

∂g
= κ

∑
σ=↑,↓

Nσ∑
i=1

Nσ∑
i ′>i

〈�|δ(xσ,i − xσ,i ′ )|�〉

+
N↑∑
i=1

N↓∑
i ′=1

〈�|δ(x↑,i − x↓,i ′ )|�〉. (4)

Using the wave function of Eq. (3), we then obtain (see
Appendix A) the corresponding energy, to linear order in 1/g,
as

E = E0 −
∑N−1

j=1
αj

g

(
Aj + 2

κ
Cj + 2

κ
Dj

)
∑M(N↓,N↑)

k=1 a2
k

, (5)

where

Aj =
M(N↓−1,N↑−1)∑

k=1

(aj |k − bj |k)2,

Cj =
M(N↓,N↑−2)∑

k=1

c2
j |k, Dj =

M(N↓−2,N↑)∑
k=1

d2
j |k,

for bosons, while Cj = Dj = 0 for fermions. Here aj |k denotes
the ak coefficients in the expansion (3) multiplying terms
�0(· · · < x↑

j

< x↓
j+1

< · · · ), with x↑ at position j followed by

x↓ at position j + 1, while bj |k are the coefficients of �0(· · · <

x↓
j

< x↑
j+1

< · · · ), with x↑ and x↓ swapped. Similarly, for

identical bosons, cj |k denote the expansion coefficients in
Eq. (3) in front of �0(· · · < x↑

j

< x↑
j+1

< · · · ), while dj |k

are the coefficients of �0(· · · < x↓
j

< x↓
j+1

< · · · ). Finally, the

geometric factors αj are solely determined by the confining
potential through �0 as

αj =
∫ ∏N↑

i=1 dx↑,i

∏N↓
i ′=1 dx↓,i ′

∣∣∣ ∂�0
∂x↓,1

∣∣∣2 δ(x↑,j − x↓,1)∫ ∏N↑
i=1 dx↑,i

∏N↓
i ′=1 dx↓,i ′ |�0({:x↑,i ,x↓,i ′ :})|2

, (6)

where in �0 in the numerator the spin-down atom x↓,1 is placed
at position j + 1 following j spin-up atoms x↑,1 . . . x↑,j .
Below we deal mostly with bosons, as they can also reproduce
fermions in the limit of κ → ∞.

We now demonstrate that Hamiltonian (1) for N = N↑ +
N↓ strongly interacting particles, 1/g � 1, can be mapped
onto the spin- 1

2 XXZ Hamiltonian of the form

Hs = E0I − 1

2

N−1∑
j=1

[
Jj (σ jσ j+1 − I) − 2Jj

κ

(
σ j

z σ j+1
z + I

)]
,

(7)
where I is the identity matrix, σ j = (σ j

x ,σ
j
y ,σ

j
z ) are the Pauli

matrices acting on the spin at site j , and Jj are position-
dependent interaction coefficients. Note that Hs conserves the
total spin projection, �z = N↑ − N↓.
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Any eigenstate of (7) can be expanded in terms of the spin
permutations 	k as

|�〉 =
M(N↑,N↓)∑

k=1

ak 	k|↑1 · · · ↑N↑ ↓1 · · · ↓N↓〉. (8)

Consider the energy expectation value 〈�|Hs |�〉. Using
the swap operator Pj,j+1 = 1

2 (σ jσ j+1 + I), we find that the
nonzero contributions to 1

2 〈�|σ jσ j+1 − I|�〉 are

[aj |k〈�j |k| + bj |k〈�j |k|Pj,j+1](Pj,j+1 − I)[aj |k|�j |k〉
+bj |kPj,j+1|�j |k〉] = −a2

j |k − b2
j |k + 2aj |kbj |k,

where |�j |k〉 ≡ | · · · ↑
j

↓
j+1

· · · 〉. Assuming normalization

〈�|�〉 = 1, we then obtain

〈�|Hs |�〉 = E0 +
N−1∑
j=1

Jj

(
Aj + 2

κ
Cj + 2

κ
Dj

)
, (9)

with Aj , Cj , and Dj having the same meaning as above.
Comparison of Eqs. (5) and (9) reveals that, to linear order in
1/g, the eigenvalue problem for the Hamiltonians (1) and (7)
is the same, with the corresponding spin-spin interaction
coefficients given by Jj = −αj/g. Note that since the overlap
integrals αj are always positive, the coefficients Jj are
negative, which is to be expected for a strongly repulsive
interatomic interaction g > 0. (This is similar to the optical
lattice setup [14], where the spin-spin interactions are mediated
by virtual intermediate two-atom states having higher energy
and therefore pushing the energies of single-atom states down.)
For fermions or hard-core bosons, κ → ∞, Eq. (7) becomes
the XXX Hamiltonian, while in the special case of bosons with
κ = 2, it reduces to the XX model Hamiltonian. These results
are summarized in Table I. In Ref. [24] Deuretzbacher et al.
also arrive at a spin-model Hamiltonian for a harmonically
trapped two-component atomic gas of fermions with κ → ∞
and bosons with κ = 1.

For concreteness, we have contemplated so far only
the ground-state energy manifold of Hamiltonian (1), yet
precisely the same arguments apply to any nth-excited-state
manifold, which can be represented by a corresponding
XXZ Hamiltonian (7) disconnected from all the other energy
manifolds, each located in the vicinity of energy En of the
corresponding Slater determinant wave function �n. This
of course holds for small enough time scales when we can
neglect energy relaxations, finite temperature, and other effects
causing transitions between different energy manifolds En of
the system.

TABLE I. Effective Heisenberg spin models for strongly inter-
acting atoms in 1D traps.

Spin- 1
2 model Constituents κ

XXZ Bosons 0 < κ < ∞
XXX Bosons or fermions κ → ∞
XX Bosons κ = 2

x

(a)

(b)

FIG. 1. (Color online) (a) A system of four atoms in a 1D trap
is initialized by changing the internal state (flipping spin) of one
of the atoms. (b) Trapping potential of Eq. (10) for V0 = 50ε and
u = (0,1,2,4) × up (top to bottom) with up � 12.5ε.

III. CONTROLLING THE SPIN-CHAIN HAMILTONIAN

The above analysis attests to the possibility of tuning
the interspin couplings Jj and anisotropy of the effective
Hamiltonian Hs , Eq. (7), through the trapping potential
V (x) and interparticle interactions g � 1 and κ > 0. As an
illustration, consider a relatively simple yet nontrivial system
of four particles confined in a symmetric double-well trap of
the form (see Fig. 1)

V (x) = −V0 sin2 [ 1
2 (x + 1)π

] − u sin2 [(x + 1)π ] . (10)

Varying parameter u � 0, we may change the potential whose
depth V0 = 50ε is chosen large enough to accommodate at
least four well-localized single-particle levels. This allows us
to restrict the problem to x ∈ [−1,1] with hard wall boundaries
at |x| = 1 and obtain accurate wave functions �0.

We assume that three of the particles are prepared in the
internal (spin) state |↑〉 and the fourth is in state |↓〉 [Fig. 1(a)].
The system is then nontrivial, since the interspin coupling
coefficients J1 (=J3) and J2 can be tuned independently, which
is not possible for less than four particles in a symmetric
trap. In Fig. 2 we show the dependence of energy eigenvalues
λn of Hs and the ratio J2/J1 on the parameter u of the
potential of Eq. (10). Clearly, for u � V0 the potential V (x)
is nearly harmonic, leading to larger overlap of the wave
functions of the particles in the middle of the trap, which
results in J2/J1 � 1.4. By increasing u we decrease the overlap
and thereby the coupling strength J2 relative to J1,3 [see
Fig. 2(d)]. For very large u � V0, the system splits into two
noninteracting parts with vanishing coupling J2 in the middle
and doubly degenerate eigenvalues. This tendency can be seen
in Figs. 2(a)–2(c), where we use three representative values of
κ . The fermionic case of κ → ∞ corresponds to the isotropic
spin Hamiltonian (see Appendix B 1). In the bosonic case
with κ < 1, the interaction with the impurity (spin-down)
particle is stronger than the interaction between identical
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FIG. 2. (Color online) Energy eigenvalues λn of Hs (less the E0I
term) vs u of Eq. (10), for N↓ = 1, N↑ = 3 and (a) κ → ∞ (fermions),
(b) κ = 1

2 , and (c) κ = 2. The ratio J2/J1 of the coupling constants is
shown in (d), with dashed lines marking J2/J1 = √

4/3 and u = up,
corresponding to the equidistant spectrum in (c). λ’s and u are in units
of ε and g = 100.

(spin-up) particles. As a result, the pair of lowest-energy
eigenstates, corresponding approximately to configurations
|↓↑↑↑〉 ± |↑↑↑↓〉 with the impurity particle at the boundary,
are almost completely decoupled from the other configurations
and therefore are nearly degenerate (see Appendix B 2), which
was also discussed in [34]. The case of κ = 2 corresponding
to the XX model is of special interest in the following. As
seen in Fig. 2(d), by choosing u = up � 12.5ε we obtain for
the ratio of the coupling strengths J2/J1 = √

4/3, leading to
the equidistant eigenspectrum in Fig. 2(c).

IV. QUANTUM DYNAMICS IN ENGINEERED
SPIN CHAINS

The possibility to realize various spin-chain Hamiltonians
with cold-trapped atoms can have important implications for
quantum simulations and computation [4,8]. A potentially
useful application of quantum dynamics in engineered spin
chains can be state transfer in small quantum networks
[25–27]. Faithful transfer of quantum states is a prerequisite for
achieving scalable quantum information processing in lattice-
based schemes where qubit-qubit interactions are typically
short range and implementing quantum logic gates between
distant qubits requires interconnecting them via quantum
channels represented by tunable spin chains [35].

In its standard form [25,26,35], the quantum-state transfer
protocol involves preparing the spin chain in a dynamically
passive state, e.g., |↑↑ · · · ↑↑〉, and then initializing at time
tin = 0 the first spin with the qubit state |ψ〉 = α|↑〉 + β|↓〉 to
be transferred. Ideal transfer would imply that at a well-defined
time tout the last spin of the chain is in state |ψ〉 (up to a
certain relative phase φ0 between the amplitudes of |↑〉 and
|↓〉). Since for the qubit state |↑〉 the spin chain remains in
the passive state, our aim is to maximize the probability of
attaining state |↑↑ · · · ↑↓〉 at time tout given that at time t = 0
its state was |�(0)〉 = |↓↑ · · · ↑↑〉. We thus define the fidelity
of state transfer as

F (t) ≡ |〈�(t)|↑↑ · · · ↑↓〉|2. (11)

The chain of four spins initialized as shown in Fig. 1(a)
represents the smallest nontrivial system in which achieving
perfect state transfer, F (tout) = 1, requires a judicious
choice of the parameters of Hamiltonian Hs . Indeed, in
a two-state system, resonant coupling J1 between |↓↑〉
and |↑↓〉 amounts to complete Rabi oscillations, while
in a three-state system with degenerate initial |↓↑↑〉 and
final |↑↑↓〉 states, and a not-too-large energy offset of the
intermediate state |↑↓↑〉, any J1 and J2 result in effective Rabi
oscillations between the initial and final states [28,29]. The
necessary and sufficient condition for perfect state transfer
in a spin chain of any length N is a commensurate spectrum
of Hs [30], namely, e−iλntout = (−1)neiφ with some φ, the
equidistant spectrum, λn+1 − λn = �λ ∀ n, being optimal [36]
in terms of the fastest transfer time tout = �π/�λ. In the
case of the XX Hamiltonian, perfect and optimal state
transfer is realized by choosing the coupling constants as
Jj = J0

√
(N − j )j [28,29], resulting in tout = �π/2J0. For

our system of N = 4 spins, this corresponds to J2/J1 = √
4/3

[see Figs. 2(c) and 2(d)] and transfer time tout = �π/J2.
In Fig. 3 we show the time dependence of fidelities F (t)

of state transfer for the same values of κ as in Fig. 2. Due

FIG. 3. (Color online) Fidelity F (t) of state transfer in a four-spin
system with (a) κ → ∞ (fermions), (b) κ = 1

2 , and (c) κ = 2 [cf.
Figs. 2(a), 2(b), and 2(c)], for u = 0 (dashed, blue), up (solid, orange),
and 2up (dotted, black). For visual aid, the values of F = 2/3,0.9,0.99
are marked with thin dashed horizontal lines. Time is in units of �/ε.
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to the incommensurate spectrum, the fermionic (XXX) case
κ → ∞ without external magnetic field (see below) cannot
realize perfect state transfer for any u. This we prove in
Appendix B, where we also show that bosons with κ = 1 yield
the same fidelity as the fermions in Fig. 3(a). In the bosonic
case with κ < 1, we observe in Fig. 3(b) a slow (third order in
Jj ) transition between the degenerate initial |↓↑↑↑〉 and final
|↑↑↑↓〉 states via the nonresonant intermediate states |↑↓↑↑〉
and |↑↑↓↑〉 (see Appendix B 2 for details). Finally, the perfect,
optimal state transfer is realized in the κ = 2 (XX) case with
u = up [Fig. 3(c)], as expected,

We note, finally, that the XXX Hamiltonian can in principle
be modified by a spatially inhomogeneous (effective) magnetic
field B(x)σz, resulting in

H̃s = Hs +
N∑

j=1

hjσ
j
z , (12)

as shown in Appendix C. Then, for N↓ = 1, an appropriate
choice of the local fields, h1,N = J1,N−1 and hj=2,...,N−1 =
Jj−1 + Jj , will equalize the diagonal elements of H̃s , turning
it into the XX Hamiltonian, which, with proper interspin
coupling coefficients Jj determined by the trapping potential
V (x), can realize perfect state transfer.

V. CONCLUSIONS

We have shown that a two-component system of strongly
interacting atoms in a 1D trap can be represented as a spin chain
described by the XXZ model Hamiltonian. Quite generally,
any number of atoms N in an arbitrary trapping potential—not
necessary spatially periodic—is amenable to such a representa-
tion. To obtain the corresponding spin-chain Hamiltonian (7),
one has to construct the Slater determinant wave function
�0 from N single-particle eigenfunctions in the trap of a
given form V (x) and then calculate the overlap integrals

αj of Eq. (6), yielding the spin-spin interaction coefficients
Jj = −αj/g. In turn, the shape of the trapping potential
determines the parameters of the resulting Hamiltonian, which
permits (reverse) engineering of the desired many-body states
and dynamics of the effective spin chain.

Our formalism, while applicable to particles with strong
contact interactions, scales favorably with the particle number
N . Moreover, our approach is easily extendable to multicom-
ponent (spin s > 1/2) systems analogous to spin-chain models
with SU (2s + 1) symmetry. Chains of coupled qudits of
dimension 2s + 1 > 2 exhibit a higher quality of entanglement
transfer [37].

The experimental context of our study is cold alkali-metal
atoms, e.g., Rb or Li, in small traps of dimension L ∼ 1 μm,
realized by far-detuned focused laser beams or optical lattices.
The corresponding energy scale is then ε/� ∼ 1–10 kHz,
while strong interactions g � 1 occur near Feshbach reso-
nances in external magnetic fields. Tailoring magnetic fields
on the scale of L could be difficult. Instead, appropriately
detuned, tightly focused laser beams can mimic spatially
inhomogeneous magnetic fields through differential Stark
shifts of the hyperfine (Zeeman) atomic levels and can induce
Raman transitions between (spin) states of individual atoms
to prepare, initialize, and read out the state of the system as
required [7,8].
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APPENDIX A: PERTURBATIVE DERIVATION OF THE ENERGY EIGENVALUES, EQ. (5)

Here we outline the derivation of the energy eigenvalues of Hamiltonian (1). The corresponding eigenvalue problem is defined
by the Schrödinger equation

∑
σ=↑,↓

Nσ∑
i=1

h(xσ,i)� = E�, (A1)

supplemented with the boundary conditions at the contact positions of any two particles,(
∂�

∂xσ,i

− ∂�

∂xσ ′,i ′

) ∣∣∣∣
xσ,i−xσ ′ ,i′ =0+

xσ,i−xσ ′ ,i′ =0−
= 2gσσ ′�(xσ,i = xσ ′,i ′ ). (A2)

The dependence of the energy E on the interaction strength g can be inferred from the Hellmann-Feynman theorem [31,33],
Eq. (4),

∂E

∂g
= κ

∑
σ=↑,↓

Nσ∑
i=1

Nσ∑
i ′>i

〈�|δ(xσ,i − xσ,i ′ )|�〉 +
N↑∑
i=1

N↓∑
i ′=1

〈�|δ(x↑,i − x↓,i ′)|�〉. (A3)

Combining Eqs. (A2) and (A3), we obtain for small 1/g

∂E

∂g
= K↑↓

g2
+ K↑↑

κg2
+ K↓↓

κg2
+ O(1/g2), (A4)
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with the interaction parameters Kσσ ′ given by

K↑↓ = lim
g→∞

∑N↑
i=1

∑N↓
i ′=1

∫ ∏N↑
j=1 dx↑,j

∏N↓
j ′=1 dx↓,j ′

∣∣( ∂�
∂x↓,i

− ∂�
∂x↑,i′

)∣∣x↓,i−x↑,i′ =0+

x↓,i−x↑,i′ =0−
∣∣2δ(x↓,i − x↑,i ′ )

4
∫ ∏N↑

i=1 dx↑,i

∏N↓
i ′=1 dx↓,i ′ |�|2

, (A5)

Kσσ = lim
g→∞

∑Nσ

i=1

∑Nσ

i ′>i

∫ ∏N↑
j=1 dx↑,j

∏N↓
j ′=1 dx↓,j ′

∣∣( ∂�
∂xσ,i

− ∂�
∂xσ,i′

)∣∣xσ,i−xσ,i′ =0+

xσ,i−xσ,i′ =0−
∣∣2δ(xσ,i − xσ,i ′ )

4
∫ ∏N↑

i=1 dx↑,i

∏N↓
i ′=1 dx↓,i ′ |�|2

, (A6)

with σ = ↑ or ↓. Apparently, different wave functions � with the corresponding combinations of ak in Eq. (3) lead to different
values of Kσσ ′ , which lifts the degeneracy of the spectrum. By integrating Eq. (A4) with respect to g, we obtain the perturbative
expansion (5) used in Sec. II.

APPENDIX B: STATIC AND DYNAMIC PROPERTIES OF THE EFFECTIVE SPIN MODEL WITH N↓ = 1 AND N↑ = 3

Here we present analytic expressions for the eigenvalues and eigenvectors of the spin Hamiltonian Hs for four particles, three
of which are in one internal state (spin up) and the other one is in a different internal state (spin down), and analyze the state
transfer dynamics.

In the basis of {|↓↑↑↑〉,|↑↓↑↑〉,|↑↑↓↑〉,|↑↑↑↓〉}, the Hamiltonian in Eq. (7) can be cast in the matrix form,

Hs − E0I =

⎛
⎜⎜⎝

J1 + 2J1
κ

+ 2J2
κ

−J1 0 0
−J1 J1 + 2J1

κ
+ J2 −J2 0

0 −J2 J1 + 2J1
κ

+ J2 −J1

0 0 −J1 J1 + 2J1
κ

+ 2J2
κ

⎞
⎟⎟⎠, (B1)

where the E0I term yields a trivial common energy shift for all spin configurations and can therefore be dropped. For finite κ ,
Eq. (B1) describes bosons, and we see that for κ = 2 all the diagonal elements of the matrix are the same, which is in fact the
Heisenberg XX model. The fermionic limit κ → ∞ corresponds to the isotropic XXX model.

The eigenvalues of Eq. (B1) are

λ1 =
2J1 + κJ1 + J2 −

√
κ2J 2

1 + J 2
2

κ
, λ2 =

2J1 + κJ1 + J2 +
√

κ2J 2
1 + J 2

2

κ
,

λ3 =
2J1 + κJ1 + J2 + κJ2 −

√
κ2J 2

1 + J 2
2 − 2κJ 2

2 + κ2J 2
2

κ
, λ4 =

2J1 + κJ1 + J2 + κJ2 +
√

κ2J 2
1 + J 2

2 − 2κJ 2
2 + κ2J 2

2

κ
,

with the corresponding (non-normalized) eigenvectors

|�1〉 =
⎧⎨
⎩1,

J2 +
√

κ2J 2
1 + J 2

2

κJ1
,
J2 +

√
κ2J 2

1 + J 2
2

κJ1
,1

⎫⎬
⎭ ,

|�2〉 =
⎧⎨
⎩1,

J2 −
√

κ2J 2
1 + J 2

2

κJ1
,
J2 −

√
κ2J 2

1 + J 2
2

κJ1
,1

⎫⎬
⎭ ,

|�3〉 =
⎧⎨
⎩−1,−

J2 − κJ2 +
√

κ2J 2
1 + J 2

2 − 2κJ 2
2 + κ2J 2

2

κJ1
,
J2 − κJ2 +

√
κ2J 2

1 + J 2
2 − 2κJ 2

2 + κ2J 2
2

κJ1
,1

⎫⎬
⎭ ,

|�4〉 =
⎧⎨
⎩−1,−

J2 − κJ2 −
√

κ2J 2
1 + J 2

2 − 2κJ 2
2 + κ2J 2

2

κJ1
,
J2 − κJ2 −

√
κ2J 2

1 + J 2
2 − 2κJ 2

2 + κ2J 2
2

κJ1
,1

⎫⎬
⎭ .

1. Fermions

In the limit of κ → ∞, the ordered eigenvalues and normalized eigenvectors reduce to

λ
(f)
1 = 0,

∣∣�(f)
1

〉 = 1

2
{1,1,1,1}; λ

(f)
2 = J1 + J2 −

√
J 2

1 + J 2
2 ,

∣∣�(f)
2

〉 = 1

2

√
J 2

1 + J 2
2 − J2

√
J 2

1 + J 2
2

{−J1,J2 −
√

J 2
1 + J 2

2 ,−J2 +
√

J 2
1 + J 2

2 ,J1
}
;
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λ
(f)
3 = 2J1,

∣∣�(f)
3

〉 = 1

2
{1,−1,−1,1}; λ

(f)
4 = J1 + J2 +

√
J 2

1 + J 2
2 ,

∣∣�(f)
4

〉 = 1

2

√
J 2

1 + J 2
2 + J2

√
J 2

1 + J 2
2

{−J1,J2 +
√

J 2
1 + J 2

2 ,−J2 −
√

J 2
1 + J 2

2 ,J1
}
.

Our aim is to transfer the initial state |�(f)
in 〉 = |↓↑↑↑〉, which evolves in time as

|�(f)(t)〉 = 1

2

∣∣�(f)
1

〉
e−iλ

(f)
1 t − J1

2

√
J 2

1 + J 2
2 − J2

√
J 2

1 + J 2
2

∣∣�(f)
2

〉
e−iλ

(f)
2 t + 1

2

∣∣�(f)
3

〉
e−iλ

(f)
3 t − J1

2

√
J 2

1 + J 2
2 + J2

√
J 2

1 + J 2
2

∣∣�(f)
4

〉
e−iλ

(f)
4 t ,

to the final state∣∣�(f)
out

〉 = |↑↑↑↓〉 = 1

2

∣∣�(f)
1

〉 + J1

2

√
J 2

1 + J 2
2 − J2

√
J 2

1 + J 2
2

∣∣�(f)
2

〉 + 1

2

∣∣�(f)
3

〉 + J1

2

√
J 2

1 + J 2
2 + J2

√
J 2

1 + J 2
2

∣∣�(f)
4

〉
.

The necessary and sufficient conditions for this are(
λ

(f)
n+1 − λ(f)

n

)
tout = (2mn + 1)π, (B2)

where mn are some positive integers and tout is a transfer time. This leads to two equations for m1,2,3:

1 − r + √
1 + r2

1 + r − √
1 + r2

= 2m2 + 1

2m1 + 1
,

−1 + r + √
1 + r2

1 + r − √
1 + r2

= 2m3 + 1

2m1 + 1
,

which determine the ratio r = J2/J1 for perfect state transfer. These equations can only be satisfied if

2m1 = −2 − m2 − m3 +
√

2 + 4m2 + m2
2 + 4m3 + 6m2m3 + m2

3 or
(B3)

2m1 = m2 + m3 +
√

2 + 4m2 + m2
2 + 4m3 + 6m2m3 + m2

3.

Since m1 is an integer,
√

2 + 4m2 + m2
2 + 4m3 + 6m2m3 + m2

3 = k should also be some integer k. First notice that

2 + 4m2 + m2
2 + 4m3 + 6m2m3 + m2

3 = 2(m2 + m3 + 1)2 − (m2 − m3)2.

We now prove that the condition

k2 + (m2 − m3)2 = 2(m2 + m3 + 1)2 (B4)

cannot be satisfied with any set of integers m2,m3 and k. There are four possible cases: (i) k is odd and (m2 − m3) is even, (ii) k

is even and (m2 − m3) is odd, (iii) both k and (m2 − m3) are odd, and (iv) both k and (m2 − m3) are even. Note that if (m2 − m3)
is odd (even), then (m2 + m3 + 1) is even (odd). Cases (i) and (ii) are then ruled out since they yield an odd left-hand side (lhs)
of Eq. (B4), whereas the right-hand side (rhs) is always even. For case (iii) the rhs is divisible by 4 without a remainder and the
lhs is not. Finally, for case (iv) the lhs is divisible by 4 without a remainder and the rhs is not. This means that conditions (B3)
cannot be satisfied. Hence, an isotropic (XXX) spin chain cannot realize perfect state transfer, unless the diagonal elements of
the Hamiltonian matrix in Eq. (B1) are modified by a local (magnetic field) perturbation, cf. Eq. (C4) below.

2. Bosons

We now consider bosons with κ = 1, leading to the following eigenvalues and eigenvectors:

λ
(b)
1 = 3J1 + J2 −

√
J 2

1 + J 2
2 ,

∣∣�(b)
1

〉 = 1

2

√
J 2

1 + J 2
2 + J2

√
J 2

1 + J 2
2

{
J1,J2 +

√
J 2

1 + J 2
2 ,J2 +

√
J 2

1 + J 2
2 ,J1

}
;

λ
(b)
2 = 2J1 + 2J2,

∣∣�(b)
2

〉 = 1

2
{−1,−1,1,1};

λ
(b)
3 = 3J1 + J2 +

√
J 2

1 + J 2
2 ,

∣∣�(b)
3

〉 = 1

2

√
J 2

1 + J 2
2 − J2

√
J 2

1 + J 2
2

{
J1,J2 −

√
J 2

1 + J 2
2 ,J2 −

√
J 2

1 + J 2
2 ,J1

}
;

λ
(b)
4 = 4J1 + 2J2,

∣∣�(b)
4

〉 = 1

2
{−1,1,−1,1}.
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The initial state |�(b)
in 〉 = |↓↑↑↑〉 now evolves as

|�(b)(t)〉 = J1

2

√
J 2

1 + J 2
2 + J2

√
J 2

1 + J 2
2

∣∣�(b)
1

〉
e−iλ

(b)
1 t − 1

2

∣∣�(b)
2

〉
e−iλ

(b)
2 t

+ J1

2

√
J 2

1 + J 2
2 − J2

√
J 2

1 + J 2
2

∣∣�(b)
3

〉
e−iλ

(b)
3 t − 1

2

∣∣�(b)
4

〉
e−iλ

(b)
4 t .

Note that λ
(b)
4 − λ

(b)
3 = λ

(f)
2 , λ

(b)
4 − λ

(b)
2 = λ

(f)
3 , and λ

(b)
4 − λ

(b)
1 = λ

(f)
4 . As a result, the fidelity of state transfer, F (t) ≡

|〈�(t)|↑↑↑↓〉|2, is the same for both fermions (κ → ∞) and bosons with κ = 1, which holds true for N↓ = 1 and any N↑.
Next, in the special case of perfect state transfer, J2/J1 = √

4/3, with the Heisenberg XX model, κ = 2, we have the
equidistant spectrum λ

(b)
1 =

√
12−1
2 J2, λ

(b)
2 = λ

(b)
1 + J2, λ

(b)
3 = λ

(b)
1 + 2J2, and λ

(b)
4 = λ

(b)
1 + 3J2, leading to the fastest transfer

time tout = π/J2.
The final case discussed in the text concerns the limit κ � 1 when interspecies interaction is much larger than the intraspecies

interaction. Then the two lowest eigenstates |�(b)
1 〉 � 1√

2
{1,0,0,1} and |�(b)

2 〉 � 1√
2
{−1,0,0,1} become degenerate, λ

(b)
1 � λ

(b)
2

and separated from the other two eigenstates |�(b)
3 〉 � 1√

2
{0,1,1,0} and |�(b)

4 〉 � 1√
2
{0,−1,1,0} by λ

(b)
3,4 − λ

(b)
1 � 2J2

κ
± J2. The

state transfer between the initial |↓↑↑↑〉 and final |↑↑↑↓〉 states proceeds then via nonresonant intermediate states |↑↓↑↑〉 and

|↑↑↓↑〉 as a third-order process with the effective Rabi frequency Jeff � J1J2J1
(2J2/κ)2 = κ2J 2

1
4J2

.

APPENDIX C: EFFECTIVE SPIN MODEL IN A MAGNETIC FIELD

Here we outline the derivation of the effective spin Hamiltonian H̃s for N particles in an (effective) external magnetic field
B(x)σz. We consider a single spin-down particle N↓ = 1 and assume a weak magnetic field B(x) = b(x)/g (g � 1) which
modifies the Hamiltonian H of Eq. (1) as

H̃ = H +
N−1∑
i=1

b(x↑,i)

g
− b(x↓,1)

g
. (C1)

For the corresponding energy of N -particle eigenfunction �, to linear order in 1/g, we then obtain

Ẽ = E − 2

∑N
j=1

βj

g
a2

j∑N
j=1 a2

j

+
N∑

j=1

βj , (C2)

where we write simply aj instead of aj |k for a single impurity (spin-down) particle, while the geometric factors are

βj =
∫ ∏N−1

i=1 dx↑,i dx↓,1|�0|2 b(x↓,1)∫ ∏N−1
i=1 dx↑,i dx↓,1|�0({: x↑,i ,x↓,1 :})|2 , (C3)

where in �0 in the numerator the spin-down particle x↓,1 is placed at position j . The effective spin Hamiltonian for the case
κ → ∞ can now be cast as

H̃s = E0I − 1

2

N−1∑
j=1

Jj (σ jσ j+1 − I) +
N∑

j=1

hjσ
j
z , (C4)

with hj = βj .
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