2,233 research outputs found

    Analysis of a Material Phase Shifting Element in an Atom Interferometer

    Full text link
    The interaction of Na atoms with a surface was probed by inserting a nanofabricated material grating into one arm of an atom interferometer (IFM). This technique permits a direct measurement of the change in phase and coherence of matter waves as they pass within 25 nm of the grating bar surface. The practical concerns and challenges of making such a measurement are discussed here. Interference of spurious diffraction orders, IFM path overlap, and the partial obscuration of IFM beams are all important aspects of this experiment. The systematic effects that contribute to the measured phase shift and contrast are discussed.Comment: 5 pages, 5 figures, submitted to Journal of Physics: Conference Proceedings, Conference on Atoms and Molecules near Surface

    Measurement of atomic diffraction phases induced by material gratings

    Full text link
    Atom-surface interactions can significantly modify the intensity and phase of atom de Broglie waves diffracted by a silicon nitride grating. This affects the operation of a material grating as a coherent beam splitter. The phase shift induced by diffraction is measured by comparing the relative phases of serveral interfering paths in a Mach-Zehnder Na atom interferometer formed by three material gratings. The values of the diffraction phases are consistent with a simple model which includes a van der Waals atom-surface interaction between the Na atoms and the silicon nitride grating bars.Comment: 4 pages, 5 figures, submitted to PR

    Observation of atom wave phase shifts induced by van der Waals atom-surface interactions

    Full text link
    The development of nanotechnology and atom optics relies on understanding how atoms behave and interact with their environment. Isolated atoms can exhibit wave-like (coherent) behaviour with a corresponding de Broglie wavelength and phase which can be affected by nearby surfaces. Here an atom interferometer is used to measure the phase shift of Na atom waves induced by the walls of a 50 nm wide cavity. To our knowledge this is the first direct measurement of the de Broglie wave phase shift caused by atom-surface interactions. The magnitude of the phase shift is in agreement with that predicted by quantum electrodynamics for a non-retarded van der Waals interaction. This experiment also demonstrates that atom-waves can retain their coherence even when atom-surface distances are as small as 10 nm.Comment: 4 pages, 4 figures, submitted to PR
    corecore