15,325 research outputs found

    Two and three electrons in a quantum dot: 1/|J| - expansion

    Full text link
    We consider systems of two and three electrons in a two-dimensional parabolic quantum dot. A magnetic field is applied perpendicularly to the electron plane of motion. We show that the energy levels corresponding to states with high angular momentum, J, and a low number of vibrational quanta may be systematically computed as power series in 1/|J|. These states are relevant in the high-B limit.Comment: LaTeX, 15 pages,6 postscript figure

    Constraints on the braneworld from compact stars

    Get PDF
    According to the braneworld idea, ordinary matter is confined on a 3-dimensional space (brane) that is embedded in a higher-dimensional space-time where gravity propagates. In this work, after reviewing the limits coming from general relativity, finiteness of pressure and causality on the brane, we derive observational constraints on the braneworld parameters from the existence of stable compact stars. The analysis is carried out by solving numerically the brane-modified Tolman-Oppenheimer-Volkoff equations, using different representative equations of state to describe matter in the star interior. The cases of normal dense matter, pure quark matter and hybrid matter are considered.Comment: 13 pages, 11 figures, 2 tables; new EoS considered, references and comments adde

    Solitary electromechanical pulses in Lobster neurons

    Full text link
    Investigations of nerve activity have focused predominantly on electrical phenomena. Nerves, however, are thermodynamic systems, and changes in temperature and in the dimensions of the nerve can also be observed during the action potential. Measurements of heat changes during the action potential suggest that the nerve pulse shares many characteristics with an adiabatic pulse. First experiments in the 1980s suggested small changes in nerve thickness and length during the action potential. Such findings have led to the suggestion that the action potential may be related to electromechanical solitons traveling without dissipation. However, they have been no modern attempts to study mechanical phenomena in nerves. Here, we present ultrasensitive AFM recordings of mechanical changes on the order of 2 - 12 {\AA} in the giant axons of the lobster. We show that the nerve thickness changes in phase with voltage change. When stimulated at opposite ends of the same axon, colliding action potentials pass through one another and do not annihilate. These observations are consistent with a mechanical interpretation of the nervous impulse.Comment: 9 pages, 4 figure

    Bounding the frequency response for digital transfer functions: results and applications

    Get PDF
    This paper introduces robust stability techniques for the computation of exact bounds for the frequency response of FIR and IIR digital filters in which the l∞ norm of the coefficients is bounded

    Focused directed evolution of aryl-alcohol oxidase in Saccharomyces cerevisiae by using chimeric signal peptides

    Get PDF
    Aryl-alcohol oxidase (AAO) is an extracellular flavoprotein that supplies ligninolytic peroxidases with H2O2 during natural wood decay. With a broad substrate specificity and highly stereoselective reaction mechanism, AAO is an attractive candidate for studies into organic synthesis and synthetic biology, and yet the lack of suitable heterologous expression systems has precluded its engineering by directed evolution. In this study, the native signal sequence of AAO from Pleurotus eryngii was replaced by those of the mating a-factor and the K1 killer toxin, as well as different chimeras of both prepro-leaders in order to drive secretion in Saccharomyces cerevisiae. The secretion of these AAO constructs increased in the following order: preproa-AAO> preaproK-AAO>preKproa-AAO>preproK-AAO. The chimeric preaproK-AAO was subjected to focused-directed evolution with the aid of a dual screening assay based on the Fenton reaction. Random mutagenesis and DNA recombination was concentrated on two protein segments (Meta1]-Val109 and Phe392-Gln566), and an array of improved variants was identified, among which the FX7 mutant (harboring the H91N mutation) showed a dramatic 96-fold improvement in total activity with secretion levels of 2 mg/liter. Analysis of the N-terminal sequence of the FX7 variant confirmed the correct processing of the preaproK hybrid peptide by the KEX2 protease. FX7 showed higher stability in terms of pH and temperature, whereas the pH activity profiles and the kinetic parameters were maintained. The Asn91 lies in the flavin attachment loop motif, and it is a highly conserved residue in all members of the GMC superfamily, except for P. eryngii and P. pulmonarius AAO. The in vitro involution of the enzyme by restoring the consensus ancestor Asn91 promoted AAO expression and stability

    Vortex ratchet reversal: The role of interstitial vortices

    Get PDF
    Triangular arrays of Ni nanotriangles embedded in superconducting Nb films exhibit unexpected dynamical vortex effects. Collective pinning with a vortex lattice configuration different from the expected fundamental triangular "Abrikosov state" is found. The vortex motion which prevails against the triangular periodic potential is produced by channelling effects between triangles. Interstitial vortices coexisting with pinned vortices in this asymmetric potential, lead to ratchet reversal, i.e. a DC output voltage which changes sign with the amplitude of an applied alternating drive current. In this landscape, ratchet reversal is always observed at all magnetic fields (all numbers of vortices) and at different temperatures. The ratchet reversal is unambiguously connected to the presence of two locations for the vortices: interstitial and above the artificial pinning sites.Comment: 21 pages, 4 figures, 1 Tabl
    • …
    corecore