180 research outputs found

    Buenas prácticas para la salud bucal en adultos mayores

    Get PDF
    Desde una mirada integral de docentes rehabilitadores de la cátedra de Prostodoncia IV”B” de la facultad de Odontología de Córdoba, observamos que en la actualidad los tratamientos odontológicos generales carecen de la inclusión de controles una vez que el paciente geronte ha recibido el alta odontológica. La mayoría de las veces, el profesional a cargo de la salud bucal tiene una mirada hacia la enfermedad y no  al mantenimiento de la salud bucal. Sumado a ello, los adultos mayores presentan condiciones físicas, emocionales y sociales que los hace vulnerables. Todas estas carencias llevan a producir diferentes alteraciones en la salud a nivel general y bucal, es por esto, que debemos enfatizar en el cuidado  de higiene y mantenimiento de sus prótesis para no añadirle otra complicación. El presente proyecto pretende acercar una propuesta de buenas prácticas para la salud bucal e higiene de las prótesis removibles a personas adultas mayores y al equipo multidisciplinario, que trabajan en pos de su calidad de vida del centro de jubilados ubicado en el barrio Bella Vista de la ciudad de Córdoba capital. La idea central de esta propuesta es crear y fortalecer hábitos favorables para la salud bucal a partir de lo que el “otro” sabe para desde allí facilitar la incorporación de nuevos conocimientos y promover el cambio de un estilo de vida en lo que se refiere a su salud bucal. Con el propósito de intercambiar y acercar  información se realizarán diversas dinámicas, con la participación activa de los adultos mayores y de todo el equipo interdisciplinario, donde ellos mismos serán actores de teatralizaciones , creadores de folletos, elaboradores de juegos de mente, relatores de cuentos, fábulas o historias en temas relacionados a hábitos de higiene y salud bucal en general. Se espera que con este Proyecto se creen canales de difusión generados por ellos mismos hacia otros pares no involucrados en el mismo, a los fines de que los beneficios sean de carácter multiplicador a otros centros de jubilados fomentando a estimular a los adultos mayores, a su círculo familiar y social a tomar conciencia sobre el impacto que genera una correcta salud oral aplicada en la vida cotidiana de todo ser humano

    Early Epidemiological Assessment of the Virulence of Emerging Infectious Diseases: A Case Study of an Influenza Pandemic

    Get PDF
    Background: The case fatality ratio (CFR), the ratio of deaths from an infectious disease to the number of cases, provides an assessment of virulence. Calculation of the ratio of the cumulative number of deaths to cases during the course of an epidemic tends to result in a biased CFR. The present study develops a simple method to obtain an unbiased estimate of confirmed CFR (cCFR), using only the confirmed cases as the denominator, at an early stage of epidemic, even when there have been only a few deaths. Methodology/Principal Findings: Our method adjusts the biased cCFR by a factor of underestimation which is informed by the time from symptom onset to death. We first examine the approach by analyzing an outbreak of severe acute respiratory syndrome in Hong Kong (2003) with known unbiased cCFR estimate, and then investigate published epidemiological datasets of novel swine-origin influenza A (H1N1) virus infection in the USA and Canada (2009). Because observation of a few deaths alone does not permit estimating the distribution of the time from onset to death, the uncertainty is addressed by means of sensitivity analysis. The maximum likelihood estimate of the unbiased cCFR for influenza may lie in the range of 0.16-4.48% within the assumed parameter space for a factor of underestimation. The estimates for influenza suggest that the virulence is comparable to the early estimate in Mexico. Even when there have been no deaths, our model permits estimating a conservative upper bound of the cCFR. Conclusions: Although one has to keep in mind that the cCFR for an entire population is vulnerable to its variations among sub-populations and underdiagnosis, our method is useful for assessing virulence at the early stage of an epidemic and for informing policy makers and the public. © 2009 Nishiura et al.published_or_final_versio

    Targeted Development of Registries of Biological Parts

    Get PDF
    BACKGROUND: The design and construction of novel biological systems by combining basic building blocks represents a dominant paradigm in synthetic biology. Creating and maintaining a database of these building blocks is a way to streamline the fabrication of complex constructs. The Registry of Standard Biological Parts (Registry) is the most advanced implementation of this idea. METHODS/PRINCIPAL FINDINGS: By analyzing inclusion relationships between the sequences of the Registry entries, we build a network that can be related to the Registry abstraction hierarchy. The distribution of entry reuse and complexity was extracted from this network. The collection of clones associated with the database entries was also analyzed. The plasmid inserts were amplified and sequenced. The sequences of 162 inserts could be confirmed experimentally but unexpected discrepancies have also been identified. CONCLUSIONS/SIGNIFICANCE: Organizational guidelines are proposed to help design and manage this new type of scientific resources. In particular, it appears necessary to compare the cost of ensuring the integrity of database entries and associated biological samples with their value to the users. The initial strategy that permits including any combination of parts irrespective of its potential value leads to an exponential and economically unsustainable growth that may be detrimental to the quality and long-term value of the resource to its users

    Effect of promoter architecture on the cell-to-cell variability in gene expression

    Get PDF
    According to recent experimental evidence, the architecture of a promoter, defined as the number, strength and regulatory role of the operators that control the promoter, plays a major role in determining the level of cell-to-cell variability in gene expression. These quantitative experiments call for a corresponding modeling effort that addresses the question of how changes in promoter architecture affect noise in gene expression in a systematic rather than case-by-case fashion. In this article, we make such a systematic investigation, based on a simple microscopic model of gene regulation that incorporates stochastic effects. In particular, we show how operator strength and operator multiplicity affect this variability. We examine different modes of transcription factor binding to complex promoters (cooperative, independent, simultaneous) and how each of these affects the level of variability in transcription product from cell-to-cell. We propose that direct comparison between in vivo single-cell experiments and theoretical predictions for the moments of the probability distribution of mRNA number per cell can discriminate between different kinetic models of gene regulation.Comment: 35 pages, 6 figures, Submitte

    Balancing Robustness against the Dangers of Multiple Attractors in a Hopfield-Type Model of Biological Attractors

    Get PDF
    Background: Many chronic human diseases are of unclear origin, and persist long beyond any known insult or instigating factor. These diseases may represent a structurally normal biologic network that has become trapped within the basin of an abnormal attractor. Methodology/Principal Findings: We used the Hopfield net as the archetypical example of a dynamic biological network. By progressively removing the links of fully connected Hopfield nets, we found that a designated attractor of the nets could still be supported until only slightly more than 1 link per node remained. As the number of links approached this minimum value, the rate of convergence to this attractor from an arbitrary starting state increased dramatically. Furthermore, with more than about twice the minimum of links, the net became increasingly able to support a second attractor. Conclusions/Significance: We speculate that homeostatic biological networks may have evolved to assume a degree of connectivity that balances robustness and agility against the dangers of becoming trapped in an abnormal attractor

    Combining Next-Generation Sequencing Strategies for Rapid Molecular Resource Development from an Invasive Aphid Species, Aphis glycines

    Get PDF
    Aphids are one of the most important insect taxa in terms of ecology, evolutionary biology, genetics and genomics, and interactions with endosymbionts. Additionally, many aphids are serious pest species of agricultural and horticultural plants. Recent genetic and genomic research has expanded molecular resources for many aphid species, including the whole genome sequencing of the pea aphid, Acrythosiphon pisum. However, the invasive soybean aphid, Aphis glycines, lacks in any significant molecular resources.Two next-generation sequencing technologies (Roche-454 and Illumina GA-II) were used in a combined approach to develop both transcriptomic and genomic resources, including expressed genes and molecular markers. Over 278 million bp were sequenced among the two methods, resulting in 19,293 transcripts and 56,688 genomic sequences. From this data set, 635 SNPs and 1,382 microsatellite markers were identified. For each sequencing method, different soybean aphid biotypes were used which revealed potential biotype specific markers. In addition, we uncovered 39,822 bp of sequence that were related to the obligatory endosymbiont, Buchnera aphidicola, as well as sequences that suggest the presence of Hamiltonella defensa, a facultative endosymbiont.Molecular resources for an invasive, non-model aphid species were generated. Additionally, the power of next-generation sequencing to uncover endosymbionts was demonstrated. The resources presented here will complement ongoing molecular studies within the Aphididae, including the pea aphid whole genome, lead to better understanding of aphid adaptation and evolution, and help provide novel targets for soybean aphid control

    W-Curve Alignments for HIV-1 Genomic Comparisons

    Get PDF
    The W-curve was originally developed as a graphical visualization technique for viewing DNA and RNA sequences. Its ability to render features of DNA also makes it suitable for computational studies. Its main advantage in this area is utilizing a single-pass algorithm for comparing the sequences. Avoiding recursion during sequence alignments offers advantages for speed and in-process resources. The graphical technique also allows for multiple models of comparison to be used depending on the nucleotide patterns embedded in similar whole genomic sequences. The W-curve approach allows us to compare large numbers of samples quickly.We are currently tuning the algorithm to accommodate quirks specific to HIV-1 genomic sequences so that it can be used to aid in diagnostic and vaccine efforts. Tracking the molecular evolution of the virus has been greatly hampered by gap associated problems predominantly embedded within the envelope gene of the virus. Gaps and hypermutation of the virus slow conventional string based alignments of the whole genome. This paper describes the W-curve algorithm itself, and how we have adapted it for comparison of similar HIV-1 genomes. A treebuilding method is developed with the W-curve that utilizes a novel Cylindrical Coordinate distance method and gap analysis method. HIV-1 C2-V5 env sequence regions from a Mother/Infant cohort study are used in the comparison.The output distance matrix and neighbor results produced by the W-curve are functionally equivalent to those from Clustal for C2-V5 sequences in the mother/infant pairs infected with CRF01_AE.Significant potential exists for utilizing this method in place of conventional string based alignment of HIV-1 genomes, such as Clustal X. With W-curve heuristic alignment, it may be possible to obtain clinically useful results in a short time-short enough to affect clinical choices for acute treatment. A description of the W-curve generation process, including a comparison technique of aligning extremes of the curves to effectively phase-shift them past the HIV-1 gap problem, is presented. Besides yielding similar neighbor-joining phenogram topologies, most Mother and Infant C2-V5 sequences in the cohort pairs geometrically map closest to each other, indicating that W-curve heuristics overcame any gap problem

    A Modular Cloning System for Standardized Assembly of Multigene Constructs

    Get PDF
    The field of synthetic biology promises to revolutionize biotechnology through the design of organisms with novel phenotypes useful for medicine, agriculture and industry. However, a limiting factor is the ability of current methods to assemble complex DNA molecules encoding multiple genetic elements in various predefined arrangements. We present here a hierarchical modular cloning system that allows the creation at will and with high efficiency of any eukaryotic multigene construct, starting from libraries of defined and validated basic modules containing regulatory and coding sequences. This system is based on the ability of type IIS restriction enzymes to assemble multiple DNA fragments in a defined linear order. We constructed a 33 kb DNA molecule containing 11 transcription units made from 44 individual basic modules in only three successive cloning steps. This modular cloning (MoClo) system can be readily automated and will be extremely useful for applications such as gene stacking and metabolic engineering

    Structural Analysis to Determine the Core of Hypoxia Response Network

    Get PDF
    The advent of sophisticated molecular biology techniques allows to deduce the structure of complex biological networks. However, networks tend to be huge and impose computational challenges on traditional mathematical analysis due to their high dimension and lack of reliable kinetic data. To overcome this problem, complex biological networks are decomposed into modules that are assumed to capture essential aspects of the full network's dynamics. The question that begs for an answer is how to identify the core that is representative of a network's dynamics, its function and robustness. One of the powerful methods to probe into the structure of a network is Petri net analysis. Petri nets support network visualization and execution. They are also equipped with sound mathematical and formal reasoning based on which a network can be decomposed into modules. The structural analysis provides insight into the robustness and facilitates the identification of fragile nodes. The application of these techniques to a previously proposed hypoxia control network reveals three functional modules responsible for degrading the hypoxia-inducible factor (HIF). Interestingly, the structural analysis identifies superfluous network parts and suggests that the reversibility of the reactions are not important for the essential functionality. The core network is determined to be the union of the three reduced individual modules. The structural analysis results are confirmed by numerical integration of the differential equations induced by the individual modules as well as their composition. The structural analysis leads also to a coarse network structure highlighting the structural principles inherent in the three functional modules. Importantly, our analysis identifies the fragile node in this robust network without which the switch-like behavior is shown to be completely absent

    Modeling Structure-Function Relationships in Synthetic DNA Sequences using Attribute Grammars

    Get PDF
    Recognizing that certain biological functions can be associated with specific DNA sequences has led various fields of biology to adopt the notion of the genetic part. This concept provides a finer level of granularity than the traditional notion of the gene. However, a method of formally relating how a set of parts relates to a function has not yet emerged. Synthetic biology both demands such a formalism and provides an ideal setting for testing hypotheses about relationships between DNA sequences and phenotypes beyond the gene-centric methods used in genetics. Attribute grammars are used in computer science to translate the text of a program source code into the computational operations it represents. By associating attributes with parts, modifying the value of these attributes using rules that describe the structure of DNA sequences, and using a multi-pass compilation process, it is possible to translate DNA sequences into molecular interaction network models. These capabilities are illustrated by simple example grammars expressing how gene expression rates are dependent upon single or multiple parts. The translation process is validated by systematically generating, translating, and simulating the phenotype of all the sequences in the design space generated by a small library of genetic parts. Attribute grammars represent a flexible framework connecting parts with models of biological function. They will be instrumental for building mathematical models of libraries of genetic constructs synthesized to characterize the function of genetic parts. This formalism is also expected to provide a solid foundation for the development of computer assisted design applications for synthetic biology
    corecore