497 research outputs found

    Liver transplantation as last-resort treatment for patients with bile duct injuries following cholecystectomy: A multicenter analysis

    Get PDF
    Background Liver transplantation (LT) has been used as a last resort in patients with end-stage liver disease due to bile duct injuries (BDI) following cholecystectomy. Our study aimed to identify and evaluate factors that cause or contribute to an extended liver disease that requires LT as ultimate solution, after BDI during cholecystectomy. Methods Data from 8 high-volume LT centers relating to patients who underwent LT after suffering BDI during cholecystectomy were prospectively collected and retrospectively analyzed. Results Thirty-four patients (16 men, 18 women) with a median age of 45 (range 22-69) years were included in this study. Thirty of them (88.2%) underwent LT because of liver failure, most commonly as a result of secondary biliary cirrhosis. The median time interval between BDI and LT was 63 (range 0-336) months. There were 23 cases (67.6%) of postoperative morbidity, 6 cases (17.6%) of post-transplant 30-day mortality, and 10 deaths (29.4%) in total after LT. There was a higher probability that patients with concomitant vascular injury (hazard ratio 10.69, P=0.039) would be referred sooner for LT. Overall survival following LT at 1, 3, 5 and 10 years was 82.4%, 76.5%, 73.5% and 70.6%, respectively. Conclusion LT for selected patients with otherwise unmanageable BDI following cholecystectomy yields acceptable long-term outcomes

    Multicentre evaluation of the Boehringer Mannheim / Hitachi 911 Analysis System

    Get PDF
    The analytical performance and practicability of the Boehringer Mannheim (BM)/mtaci 91 analysis system have been assessed in a multicentre evaluation, which involved six laboratories from European countries. Analytes commonly used in classical clinical chemistry were tested in a core programme, which mainlyfollowed lhe ECCLS guidelines. In addition, a satellite programme covered other analytes, such as proteins, drugs and urine analytes. In total, the study comprised more than 100 000 data items collected over a three-month period. The evaluation was supported with 'Computer Aided Evaluation' (CAEv) and telecommunications. Acceptance criteria for the results were established at the beginning ofthe study. Nearly all ofthe analytes met the imprecision limits.' within-run imprecision (as CVs) was 2l/ofor enzyme and substrate assays, l%for ISE methods and 5l/o for immunoassays; between-day imprecision was 3l/ofor enzyme and substrate assays, 2o//o for ISE methods and 10% for immunoassays

    Potentiation of thrombus instability: a contributory mechanism to the effectiveness of antithrombotic medications

    Get PDF
    © The Author(s) 2018The stability of an arterial thrombus, determined by its structure and ability to resist endogenous fibrinolysis, is a major determinant of the extent of infarction that results from coronary or cerebrovascular thrombosis. There is ample evidence from both laboratory and clinical studies to suggest that in addition to inhibiting platelet aggregation, antithrombotic medications have shear-dependent effects, potentiating thrombus fragility and/or enhancing endogenous fibrinolysis. Such shear-dependent effects, potentiating the fragility of the growing thrombus and/or enhancing endogenous thrombolytic activity, likely contribute to the clinical effectiveness of such medications. It is not clear how much these effects relate to the measured inhibition of platelet aggregation in response to specific agonists. These effects are observable only with techniques that subject the growing thrombus to arterial flow and shear conditions. The effects of antithrombotic medications on thrombus stability and ways of assessing this are reviewed herein, and it is proposed that thrombus stability could become a new target for pharmacological intervention.Peer reviewedFinal Published versio

    Celecoxib exerts protective effects in the vascular endothelium via COX-2-independent activation of AMPK-CREB-Nrf2 signalling

    Get PDF
    Although concern remains about the athero-thrombotic risk posed by cyclo-oxygenase (COX)-2-selective inhibitors, recent data implicates rofecoxib, while celecoxib appears equivalent to NSAIDs naproxen and ibuprofen. We investigated the hypothesis that celecoxib activates AMP kinase (AMPK) signalling to enhance vascular endothelial protection. In human arterial and venous endothelial cells (EC), and in contrast to ibuprofen and naproxen, celecoxib induced the protective protein heme oxygenase-1 (HO-1). Celecoxib derivative 2,5-dimethyl-celecoxib (DMC) which lacks COX-2 inhibition also upregulated HO-1, implicating a COX-2-independent mechanism. Celecoxib activated AMPKα(Thr172) and CREB-1(Ser133) phosphorylation leading to Nrf2 nuclear translocation. Importantly, these responses were not reproduced by ibuprofen or naproxen, while AMPKα silencing abrogated celecoxib-mediated CREB and Nrf2 activation. Moreover, celecoxib induced H-ferritin via the same pathway, and increased HO-1 and H-ferritin in the aortic endothelium of mice fed celecoxib (1000 ppm) or control chow. Functionally, celecoxib inhibited TNF-α-induced NF-ÎșB p65(Ser536) phosphorylation by activating AMPK. This attenuated VCAM-1 upregulation via induction of HO-1, a response reproduced by DMC but not ibuprofen or naproxen. Similarly, celecoxib prevented IL-1ÎČ-mediated induction of IL-6. Celecoxib enhances vascular protection via AMPK-CREB-Nrf2 signalling, a mechanism which may mitigate cardiovascular risk in patients prescribed celecoxib. Understanding NSAID heterogeneity and COX-2-independent signalling will ultimately lead to safer anti-inflammatory drugs
    • 

    corecore