6,873 research outputs found

    Generalized top-spin analysis and new physics in e+ee^{+} e^{-} collisions with beam polarization

    Full text link
    A generalized top-spin analysis proposed some time ago in the context of Standard Model and subsequently studied in varying contexts is now applied primarily to the case of e+ettˉe^+e^-\rightarrow t\bar{t} with transversely polarized beams. This extends our recent work with new physics couplings of scalar (SS) and tensor (TT) types. We carry out a comprehensive analysis assuming only the electron beam to be transversely polarized, which is sufficient to probe these interactions, and also eliminates any azimuthal angular dependence due to standard model or new physics of vector (VV) and axial-vector (AA) type interactions. We then consider new physics of general four-Fermi type of VV and AA type with both beams transversely polarized and discuss implications with longitudinal polarization as well. The generalized spin bases are all investigated in the presence of either longitudinal or transverse beam polarization to look for appreciable deviation from the SM prediction in case of the new physics. 90% confidence level limits are obtained on the interactions for the generalized spin bases with realistic integrated luminosity. In order to achieve this we present a general discussion based on helicity amplitudes and derive a general transformation matrix that enables us to treat the spin basis. We find that beamline basis combined with transverse polarization provides an excellent window of opportunity both for SS, TT and VV, AA new physics, followed by the off diagonal basis. The helicity basis is shown to be the best in case of longitudinal polarization to look for new physics effectsdue to VV and AA.Comment: 21 pages using revtex4-

    Top-spin analysis of new scalar and tensor interactions in e^+ e^- collisions with beam polarization

    Get PDF
    We utilize top polarization in the process e+ e-\rightarrow t\bar{t} at the ILC with transverse beam polarization to probe interactions of the scalar and tensor type beyond the standard model and to disentangle their individual contributions. 90% confidence level limits on the interactions with realistic integrated luminosity are presented and are found to improve by an order of magnitude compared to the case when the spin of the top quark is not measured. Sensitivities of the order of a few times 10^{-3} TeV^{-2} for real and imaginary parts of both scalar and tensor couplings at \sqrt{s}=500 and 800 GeV with an integrated luminosity of 500 fb^{-1} and completely polarized beams is shown to be possible. A powerful model-independent framework for inclusive measurements is employed to describe the spin-momentum correlations and their C, P and T properties is presented in a technical appendix.Comment: 14 pages, 10 figures, uses revtex; replaced with version accepted for publication in Physical Review D; significantly rewritten and reformulated, section added, inclusive section moved to appendix, reference adde

    A new microscopic nucleon-nucleon interaction derived from relativistic mean field theory

    Full text link
    A new microscopic nucleon-nucleon (NN) interaction has been derived for the first time from the popular relativistic mean field theory (RMFT) Lagrangian. The NN interaction so obtained remarkably relate to the inbuilt fundamental parameters of RMFT. Furthermore, by folding it with the RMFT-densities of cluster and daughter nuclei to obtain the optical potential, it's application is also examined to study the exotic cluster radioactive decays, and results obtained found comparable with the successfully used M3Y phenomenological effective NN interactions. The presently derived NN-interaction can also be used to calculate a number of other nuclear observables.Comment: 4 Pages 2 Figure

    Isolating CP-violating \gamma ZZ coupling in e+e- \to \gamma Z with transverse beam polarizations

    Full text link
    We revisit the process e+eγZe^+e^- \to \gamma Z at the ILC with transverse beam polarization in the presence of anomalous CP-violating γZZ\gamma Z Z coupling λ1\lambda_1 and γγZ\gamma \gamma Z coupling λ2\lambda_2. We point out that if the final-state spins are resolved, then it becomes possible to fingerprint the anomalous coupling {\rm Re}λ1\lambda_1.90% confidence level limit on {\rm Re}λ1\lambda_1 achievable at ILC with center-of-mass energy of 500 GeV or 800 GeV with realistic initial beam polarization and integrated luminosity is of the order of few times of 10210^{-2} when the helicity of ZZ is used and 10310^{-3} when the helicity of γ\gamma is used. The resulting corrections at quadratic order to the cross section and its influence on these limits are also evaluated and are shown to be small. The benefits of such polarization programmes at the ILC are compared and contrasted for the process at hand. We also discuss possible methods by which one can isolate events with a definite helicity for one of the final-state particles.Comment: 13 pages, 9 figures, using RevTex; v2 is a significantly revised version of v1, and corresponds to the version that has been published in Physical Review

    Cold HI in faint dwarf galaxies

    Full text link
    We present the results of a study of the amount and distribution of cold atomic gas, as well its correlation with recent star formation in a sample of extremely faint dwarf irregular galaxies. Our sample is drawn from the Faint Irregular Galaxy GMRT Survey (FIGGS) and its extension, FIGGS2. We use two different methods to identify cold atomic gas. In the first method, line-of-sight HI spectra were decomposed into multiple Gaussian components and narrow Gaussian components were identified as cold HI. In the second method, the brightness temperature (T_B) is used as a tracer of cold HI. We find that the amount of cold gas identified using the T_B method is significantly larger than the amount of gas identified using Gaussian decomposition. We also find that a large fraction of the cold gas identified using the T_B method is spatially coincident with regions of recent star formation, although the converse is not true. That is only a small fraction of the regions with recent star formation are also covered by cold gas. For regions where the star formation and the cold gas overlap, we study the relationship between the star formation rate density and the cold \HI column density. We find that the star formation rate density has a power law dependence on the HI column density, but that the slope of this power law is significantly flatter than that of the canonical Kennicutt-Schmidt relation.Comment: Accepted for publication in MNRA

    Decoherence-free quantum information in the presence of dynamical evolution

    Full text link
    We analyze decoherence-free (DF) quantum information in the presence of an arbitrary non-nearest-neighbor bath-induced system Hamiltonian using a Markovian master equation. We show that the most appropriate encoding for N qubits is probably contained within the ~(2/9) N excitation subspace. We give a timescale over which one would expect to apply other methods to correct for the system Hamiltonian. In order to remain applicable to experiment, we then focus on small systems, and present examples of DF quantum information for three and four qubits. We give an encoding for four qubits that, while quantum information remains in the two-excitation subspace, protects against an arbitrary bath-induced system Hamiltonian. Although our results are general to any system of qubits that satisfies our assumptions, throughout the paper we use dipole-coupled qubits as an example physical system.Comment: 8 pages, 4 figure

    Anatomy of neck configuration in fission decay

    Full text link
    The anatomy of neck configuration in the fission decay of Uranium and Thorium isotopes is investigated in a microscopic study using Relativistic mean field theory. The study includes 236U^{236}U and 232Th^{232}Th in the valley of stability and exotic neutron rich isotopes 250U^{250}U, 256U^{256}U, 260U^{260}U, 240Th^{240}Th, 250Th^{250}Th, 256Th^{256}Th likely to play important role in the r-process nucleosynthesis in stellar evolution. Following the static fission path, the neck configurations are generated and their composition in terms of the number of neutrons and protons are obtained showing the progressive rise in the neutron component with the increase of mass number. Strong correlation between the neutron multiplicity in the fission decay and the number of neutrons in the neck is seen. The maximum neutron-proton ratio is about 5 for 260^{260}U and 256^{256}Th suggestive of the break down of liquid-drop picture and inhibition of the fission decay in still heavier isotopes. Neck as precursor of a new mode of fission decay like multi-fragmentation fission may also be inferred from this study.Comment: 16 pages, 5 figures (Accepted
    corecore