research

Isolating CP-violating \gamma ZZ coupling in e+e- \to \gamma Z with transverse beam polarizations

Abstract

We revisit the process e+eγZe^+e^- \to \gamma Z at the ILC with transverse beam polarization in the presence of anomalous CP-violating γZZ\gamma Z Z coupling λ1\lambda_1 and γγZ\gamma \gamma Z coupling λ2\lambda_2. We point out that if the final-state spins are resolved, then it becomes possible to fingerprint the anomalous coupling {\rm Re}λ1\lambda_1.90% confidence level limit on {\rm Re}λ1\lambda_1 achievable at ILC with center-of-mass energy of 500 GeV or 800 GeV with realistic initial beam polarization and integrated luminosity is of the order of few times of 10210^{-2} when the helicity of ZZ is used and 10310^{-3} when the helicity of γ\gamma is used. The resulting corrections at quadratic order to the cross section and its influence on these limits are also evaluated and are shown to be small. The benefits of such polarization programmes at the ILC are compared and contrasted for the process at hand. We also discuss possible methods by which one can isolate events with a definite helicity for one of the final-state particles.Comment: 13 pages, 9 figures, using RevTex; v2 is a significantly revised version of v1, and corresponds to the version that has been published in Physical Review

    Similar works

    Full text

    thumbnail-image