30 research outputs found
Monitoring of radionuclide migration around Kolaghat thermal power plant, West Bengal, India
A GIS-Based Approach for Radiation Risk Assessment Around a Thermal Power Plant Towards Adopting Remedial Measures
Preparation, Characterization and Evaluation of Marsupsin–Phospholipid Complex
The aim of this research was to formulate Marsupsin–phospholipid complex (M–P Complex) in attempt to increase the bioavailability of marsupsin and to characterize this new formulation along with its evaluation. Marsupsin–phospholipid complex was formulated by mechanical dispersion method. In this new formulation, complex formation was confirmed by carrying out transmission electron microscopy (TEM), IR, (1)H-NMR and RP-HPLC analysis. TEM showed M–P Complex diameter range of 0.05–0.5 μm. The entrapment efficiency of M–P Complex was found to be 44%. In vitro release study revealed its first order release profile. Mean blood serum concentration vs time curve of marsupsin was of first order after oral administration of M–P Complex in albino rabbits which clearly showed remarkably increased bioavailability of M–P Complex than standardized marsupsin. The average value of C(max) and T(max) of M–P Complex were found to be 3.02 mg/ml and 10.2 h, respectively. Hence the findings demonstrate that complexing marsupsin with phospholipids results in better oral bioavailability and improved biological response than free form of standardized marsupsin
Algae and bacteria consortia for wastewater decontamination and transformation into biodiesel, bioethanol, biohydrogen, biofertilizers and animal feed: a review
Traditional wastewater treatment has been aimed solely at sanitation by removing contaminants, yet actual issues of climate change and depletion of natural resources are calling for methods that both remove contaminants and convert waste into chemicals and fuels. In particular, biological treatments with synergic coupling of microalgae and bacteria appear promising to remove organic, inorganic, and pathogen contaminants and to generate biofuels. Here, we review the use of algae and bacteria in the treatment and valorization of wastewater with focus on cell-to-cell adhesion, wastewater properties, and techniques for algae harvesting and production of biodiesel, bioethanol, biohydrogen, exopolysaccarides, biofertilizers, and animal feeds
