391 research outputs found
Anomalous Attenuation of Transverse Sound in 3He
We present the first measurements of the attenuation of transverse sound in
superfluid 3He-B. We use fixed path length interferometry combined with the
magneto-acoustic Faraday effect to vary the effective path length by a factor
of two, resulting in absolute values of the attenuation. We find that
attenuation is significantly larger than expected from the theoretical
dispersion relation, in contrast to the phase velocity of transverse sound. We
suggest that the anomalous attenuation can be explained by surface Andreev
bound states.Comment: 4 pages, 5 figures, accepted to Phys. Rev. Let
Microfluidic and Nanofluidic Cavities for Quantum Fluids Experiments
The union of quantum fluids research with nanoscience is rich with
opportunities for new physics. The relevant length scales in quantum fluids,
3He in particular, are comparable to those possible using microfluidic and
nanofluidic devices. In this article, we will briefly review how the physics of
quantum fluids depends strongly on confinement on the microscale and nanoscale.
Then we present devices fabricated specifically for quantum fluids research,
with cavity sizes ranging from 30 nm to 11 microns deep, and the
characterization of these devices for low temperature quantum fluids
experiments.Comment: 12 pages, 3 figures, Accepted to Journal of Low Temperature Physic
Phase Filters for 3D Localization of Point Light Sources
The work relates to the engineering and research of phase filters for three-dimensional localization of point light emitters. These phase filters form a light field having two clearly visible maxima in their intensity distribution (i.e. two-lobe fields). By means of numerical simulation, the influence of the amplitude and phase distortions of the wave front of the illuminating beam on the two-lobe field formation has been studied in the work.
Keywords: spiral light beams, amplitude distortions, phase distortions, threedimensional localization, two-lobe field
Topological effects in the thermal properties of knotted polymer rings
The topological effects on the thermal properties of several knot
configurations are investigated using Monte Carlo simulations. In order to
check if the topology of the knots is preserved during the thermal fluctuations
we propose a method that allows very fast calculations and can be easily
applied to arbitrarily complex knots. As an application, the specific energy
and heat capacity of the trefoil, the figure-eight and the knots are
calculated at different temperatures and for different lengths. Short-range
repulsive interactions between the monomers are assumed. The knots
configurations are generated on a three-dimensional cubic lattice and sampled
by means of the Wang-Landau algorithm and of the pivot method. The obtained
results show that the topological effects play a key role for short-length
polymers. Three temperature regimes of the growth rate of the internal energy
of the system are distinguished.Comment: 7 pages, 12 figures, LaTeX + RevTeX. With respect to the first
version, in the second version the text has been improved and all figures are
now in black and whit
Polygonal Structures in the Gaseous Disk: Numerical Simulations
The results of numerical simulations of a gaseous disk in the potential of a
stellar spiral density wave are presented. The conditions under which
straightened spiral arm segments (rows) form in the gas component are studied.
These features of the spiral structure were identified in a series of works by
A.D. Chernin with coauthors. Gas-dynamic simulations have been performed for a
wide range of model parameters: the pitch angle of the spiral pattern, the
amplitude of the stellar spiral density wave, the disk rotation speed, and the
temperature of the gas component. The results of 2D- and 3D-disk simulations
are compared. The rows in the numerical simulations are shown to be an
essentially nonstationary phenomenon. A statistical analysis of the
distribution of geometric parameters for spiral patterns with rows in the
observed galaxies and the constructed hydrodynamic models shows good agreement.
In particular, the numerical simulations and observations of galaxies give
for the average angles between straight segments.Comment: 22 pages, 10 figure
Uncertainty relations in curved spaces
Uncertainty relations for particle motion in curved spaces are discussed. The
relations are shown to be topologically invariant. New coordinate system on a
sphere appropriate to the problem is proposed. The case of a sphere is
considered in details. The investigation can be of interest for string and
brane theory, solid state physics (quantum wires) and quantum optics.Comment: published version; phase space structure discussion adde
- …