573,135 research outputs found

    Chiral symmetry breaking in a uniform external magnetic field II. Symmetry restoration at high temperatures and chemical potentials

    Full text link
    Chiral symmetry is dynamically broken in quenched, ladder QED at weak gauge couplings when an external magnetic field is present. In this paper, we show that chiral symmetry is restored above a critical chemical potential and the corresponding phase transition is of first order. In contrast, the chiral symmetry restoration at high temperatures (and at zero chemical potential) is a second order phase transition.Comment: Latex; 12 pages; 8 postscript figures include

    The H1 Forward Track Detector at HERA II

    Full text link
    In order to maintain efficient tracking in the forward region of H1 after the luminosity upgrade of the HERA machine, the H1 Forward Track Detector was also upgraded. While much of the original software and techniques used for the HERA I phase could be reused, the software for pattern recognition was completely rewritten. This, along with several other improvements in hit finding and high-level track reconstruction, are described in detail together with a summary of the performance of the detector.Comment: Minor revision requested by journal (JINST) edito

    Dissipative Particle Dynamics with energy conservation

    Full text link
    Dissipative particle dynamics (DPD) does not conserve energy and this precludes its use in the study of thermal processes in complex fluids. We present here a generalization of DPD that incorporates an internal energy and a temperature variable for each particle. The dissipation induced by the dissipative forces between particles is invested in raising the internal energy of the particles. Thermal conduction occurs by means of (inverse) temperature differences. The model can be viewed as a simplified solver of the fluctuating hydrodynamic equations and opens up the possibility of studying thermal processes in complex fluids with a mesoscopic simulation technique.Comment: 5 page

    Newtonian Limit of Conformal Gravity

    Get PDF
    We study the weak-field limit of the static spherically symmetric solution of the locally conformally invariant theory advocated in the recent past by Mannheim and Kazanas as an alternative to Einstein's General Relativity. In contrast with the previous works, we consider the physically relevant case where the scalar field that breaks conformal symmetry and generates fermion masses is nonzero. In the physical gauge, in which this scalar field is constant in space-time, the solution reproduces the weak-field limit of the Schwarzschild--(anti)DeSitter solution modified by an additional term that, depending on the sign of the Weyl term in the action, is either oscillatory or exponential as a function of the radial distance. Such behavior reflects the presence of, correspondingly, either a tachion or a massive ghost in the spectrum, which is a serious drawback of the theory under discussion.Comment: 9 pages, comments and references added; the version to be published in Phys. Rev.

    Measurements of strongly-anisotropic g-factors for spins in single quantum states

    Full text link
    We have measured the full angular dependence, as a function of the direction of magnetic field, for the Zeeman splitting of individual energy states in copper nanoparticles. The g-factors for spin splitting are highly anisotropic, with angular variations as large as a factor of five. The angular dependence fits well to ellipsoids. Both the principal-axis directions and g-factor magnitudes vary between different energy levels within one nanoparticle. The variations agree quantitatively with random-matrix theory predictions which incorporate spin-orbit coupling.Comment: 4 pages, 3 figures, 2 in colo

    Self-dual formulations of d=3 gravity theories in the path-integral framework

    Full text link
    We study the connection, at the quantum level, between d=2+1 dimensional self-dual models with actions of growing (from first to fourth) order, governing the dynamics of helicity +2 (or -2) massive excitations. We obtain identities between generating functionals of the different models using the path-integral framework, this allowing to establish dual maps among relevant vacuum expectation values. We check consistency of these v.e.v.'s with the gauge invariance gained in each mapping.Comment: 26 pages. LaTeX. Minor changes. Published in Int. J Modern Phys. A; http://www.worldscinet.com/ijmp

    The random phase approximation applied to ice

    Full text link
    Standard density functionals without van der Waals interactions yield an unsatisfactory description of ice phases, specifically, high density phases occurring under pressure are too unstable compared to the common low density phase Ih_h observed at ambient conditions. Although the description is improved by using functionals that include van der Waals interactions, the errors in relative volumes remain sizable. Here we assess the random phase approximation (RPA) for the correlation energy and compare our results to experimental data as well as diffusion Monte Carlo data for ice. The RPA yields a very balanced description for all considered phases, approaching the accuracy of diffusion Monte Carlo in relative energies and volumes. This opens a route towards a concise description of molecular water phases on surfaces and in cavities

    Open Questions in Classical Gravity

    Full text link
    We discuss some outstanding open questions regarding the validity and uniqueness of the standard second order Newton-Einstein classical gravitational theory. On the observational side we discuss the degree to which the realm of validity of Newton's Law of Gravity can actually be extended to distances much larger than the solar system distance scales on which the law was originally established. On the theoretical side we identify some commonly accepted but actually still open to question assumptions which go into the formulating of the standard second order Einstein theory in the first place. In particular, we show that while the familiar second order Poisson gravitational equation (and accordingly its second order covariant Einstein generalization) may be sufficient to yield Newton's Law of Gravity they are not in fact necessary. The standard theory thus still awaits the identification of some principle which would then make it necessary too. We show that current observational information does not exclusively mandate the standard theory, and that the conformal invariant fourth order theory of gravity considered recently by Mannheim and Kazanas is also able to meet the constraints of data, and in fact to do so without the need for any so far unobserved non-luminous or dark matter.Comment: UCONN-93-1, plain TeX format, 22 pages (plus 7 figures - send requests to [email protected]). To appear in a special issue of Foundations of Physics honoring Professor Fritz Rohrlich on the occasion of his retirement, L. P. Horwitz and A. van der Merwe Editors, Plenum Publishing Company, N.Y., Fall 199

    Stochastic stabilization of cosmological photons

    Full text link
    The stability of photon trajectories in models of the Universe that have constant spatial curvature is determined by the sign of the curvature: they are exponentially unstable if the curvature is negative and stable if it is positive or zero. We demonstrate that random fluctuations in the curvature provide an additional stabilizing mechanism. This mechanism is analogous to the one responsible for stabilizing the stochastic Kapitsa pendulum. When the mean curvature is negative it is capable of stabilizing the photon trajectories; when the mean curvature is zero or positive it determines the characteristic frequency with which neighbouring trajectories oscillate about each other. In constant negative curvature models of the Universe that have compact topology, exponential instability implies chaos (e.g. mixing) in the photon dynamics. We discuss some consequences of stochastic stabilization in this context.Comment: 4 pages, 3 postscript figures in color which are also appropriate for black and white printers; v2 emphasizes relevance to flat as well as negatively curved cosmologies; to appear in J. Phys.
    • …
    corecore