6,918 research outputs found

    The pasta phase and its consequences on neutrino opacities

    Full text link
    In this paper, we calculate the diffusion coefficients that are related to the neutrino opacities considering the formation of nuclear pasta and homogeneous matter at low densities. Our results show that the mean free paths are significantly altered by the presence of nuclear pasta in stellar matter when compared with the results obtained with homogeneous matter. These differences in neutrino opacities certainly influence the Kelvin-Helmholtz phase of protoneutron stars and consequently the results of supernova explosion simulations

    Electrically charged pulsars

    Full text link
    n the present work we investigate one possible variation on the usual electrically neutral pulsars: the inclusion of electric charge. We study the effect of electric charge in pulsars assuming that the charge distribution is proportional to the energy density. All calculations were performed for zero temperature and fixed entropy equations of state

    Quark matter equation of state and stellar properties

    Full text link
    In this paper we study strange matter by investigating the stability window within the QMDD model at zero temperature and check that it can explain the very massive pulsar recently detected. We compare our results with the ones obtained from the MIT bag model and see that the QMDD model can explain larger masses, due to the stiffening of the equation of state

    Low density expansion and isospin dependence of nuclear energy functional: comparison between relativistic and Skyrme models

    Full text link
    In the present work we take the non relativistic limit of relativistic models and compare the obtained functionals with the usual Skyrme parametrization. Relativistic models with both constant couplings and with density dependent couplings are considered. While some models present very good results already at the lowest order in the density, models with non-linear terms only reproduce the energy functional if higher order terms are taken into account in the expansion.Comment: 16 pages,6 figures,5 table

    Effects of the Symmetry Energy and its Slope on Neutron Star Properties

    Full text link
    In this work we study the influence of the symmetry energy and its slope on three major properties of neutron stars: the maximum mass, the radii of the canonical 1.4MM_\odot and the minimum mass that enables the direct URCA effect. We utilize four parametrizations of the relativistic quantum hadrodynamics and vary the symmetry energy within accepted values. We see that although the maximum mass is almost independent of it, the radius of the canonical 1.4M1.4M_\odot and the mass that enables the direct URCA effect is strongly correlated with the symmetry energy and its slope. Also, since we expect that the radius grows with the slope, a theoretical limit arises when we increase this quantity above certain values.Comment: RevTEX; 19 pages, 13 figure

    Nuclear Matter Properties in Derivative Coupling Models Beyond Mean - Field Approximation

    Get PDF
    The structure of infinite nuclear matter is studied with two of the Zimanyi - Moszkowski (ZM) models in the framework of a relativistic approximation which takes into account Hartree terms and beyond and is compared with the results which come out of the relativistic Hartree - Fock approach in the linear Walecka model. The simple treatment applied to these models can be used in substitution to the more complicated Dirac - Brueckner - Hartree - Fock method to perform future calculations in finite nuclei.Comment: 11 pages including 1 table, 1 figure (available upon request

    Nucleation Process in Asymmetric Nuclear Matter

    Full text link
    An extended version of the non linear Walecka model, with rho mesons and eletromagnetic field is used to investigate the possibility of phase transitions in hot (warm) nuclear matter, giving rise to droplet formation. Surface properties of asymmetric nuclear matter as the droplet surface energy and its thickness are also examined.Comment: 25 pages, 6 figures, LATEX, first page missin

    Pentaquarks in the medium in the quark-meson coupling model

    Full text link
    We calculate the properties of the pentaquarks Θ+\Theta^+ and Ξ,0\Xi^{--,0} in symmetric nuclear matter using the quark meson coupling model (QMC). The stability of the Θ+\Theta^+ in the medium with respect to the channel Θ+NK+\Theta^+\to NK^+ is discussed.Comment: 6 pages, 5 figures, revte

    Caloric curve for finite nuclei in relativistic models

    Get PDF
    In this work we calculate the caloric curve (excitation energy per particle as a function of temperature) for finite nuclei within the non--linear Walecka model for different proton fractions. It is shown that the caloric curve is sensitive to the proton fraction. Freeze-out volume effects in the caloric curve are also studied.Comment: 11 pages, 1 figure, 4 table
    corecore