27,073 research outputs found

    Renewable Energy Resources Impact on Clean Electrical Power by developing the North-West England Hydro Resource Model.

    Get PDF
    This paper describes the development of a sequential decision support system to promote hydroelectric power in North-West England. The system, composed of integrated models, addresses barriers to the installation of hydroelectric power schemes. Information is linked through an economic assessment which identifies different turbine options, assesses their suitability for location and demand; and combines the different types of information in a way that supports decision making. The system is structured into five components: the hydrological resource is modelled using Low Flows 2000, the turbine options are identified from hydrological, environmental and demand requirements; and the consequences of different solutions will be fed into other components so that the environmental impacts and public acceptability can be assessed and valued. A preliminary case study is presented on an old gunpowder works to illustrate how the resource model may be employed. Historical architectural structures, power uptake and educational instruction of hydro power technology are considered

    Automated design of robust discriminant analysis classifier for foot pressure lesions using kinematic data

    Get PDF
    In the recent years, the use of motion tracking systems for acquisition of functional biomechanical gait data, has received increasing interest due to the richness and accuracy of the measured kinematic information. However, costs frequently restrict the number of subjects employed, and this makes the dimensionality of the collected data far higher than the available samples. This paper applies discriminant analysis algorithms to the classification of patients with different types of foot lesions, in order to establish an association between foot motion and lesion formation. With primary attention to small sample size situations, we compare different types of Bayesian classifiers and evaluate their performance with various dimensionality reduction techniques for feature extraction, as well as search methods for selection of raw kinematic variables. Finally, we propose a novel integrated method which fine-tunes the classifier parameters and selects the most relevant kinematic variables simultaneously. Performance comparisons are using robust resampling techniques such as Bootstrap632+632+and k-fold cross-validation. Results from experimentations with lesion subjects suffering from pathological plantar hyperkeratosis, show that the proposed method can lead tosim96sim 96%correct classification rates with less than 10% of the original features

    When it Pays to Rush: Interpreting Morphogen Gradients Prior to Steady-State

    Full text link
    During development, morphogen gradients precisely determine the position of gene expression boundaries despite the inevitable presence of fluctuations. Recent experiments suggest that some morphogen gradients may be interpreted prior to reaching steady-state. Theoretical work has predicted that such systems will be more robust to embryo-to-embryo fluctuations. By analysing two experimentally motivated models of morphogen gradient formation, we investigate the positional precision of gene expression boundaries determined by pre-steady-state morphogen gradients in the presence of embryo-to-embryo fluctuations, internal biochemical noise and variations in the timing of morphogen measurement. Morphogens that are direct transcription factors are found to be particularly sensitive to internal noise when interpreted prior to steady-state, disadvantaging early measurement, even in the presence of large embryo-to-embryo fluctuations. Morphogens interpreted by cell-surface receptors can be measured prior to steady-state without significant decrease in positional precision provided fluctuations in the timing of measurement are small. Applying our results to experiment, we predict that Bicoid, a transcription factor morphogen in Drosophila, is unlikely to be interpreted prior to reaching steady-state. We also predict that Activin in Xenopus and Nodal in zebrafish, morphogens interpreted by cell-surface receptors, can be decoded in pre-steady-state.Comment: 18 pages, 3 figure

    Structural Reorganization of Parallel Actin Bundles by Crosslinking Proteins: Incommensurate States of Twist

    Get PDF
    We construct a coarse-grained model of parallel actin bundles crosslinked by compact, globular bundling proteins, such as fascin and espin, necessary components of filapodial and mechanosensory bundles. Consistent with structural observations of bundles, we find that the optimal geometry for crosslinking is overtwisted, requiring a coherent structural change of the helical geometry of the filaments. We study the linker-dependent thermodynamic transition of bundled actin filaments from their native state to the overtwisted state and map out the "twist-state'' phase diagram in terms of the availability as well as the flexibility of crosslinker proteins. We predict that the transition from the uncrosslinked to fully-crosslinked state is highly sensitive to linker flexibility: flexible crosslinking smoothly distorts the twist-state of bundled filaments, while rigidly crosslinked bundles undergo a phase transition, rapidly overtwisting filaments over a narrow range of free crosslinker concentrations. Additionally, we predict a rich spectrum of intermediate structures, composed of alternating domains of sparsely-bound (untwisted) and strongly-bound (overtwisted) filaments. This model reveals that subtle differences in crosslinking agents themselves modify not only the detailed structure of parallel actin bundles, but also the thermodynamic pathway by which they form.Comment: Main Text (25 pages, 7 figures) with supporting material (12 pages, 9 figures, 2 tables

    Comprehensive Observations of a Solar Minimum CME with STEREO

    Full text link
    We perform the first kinematic analysis of a CME observed by both imaging and in situ instruments on board STEREO, namely the SECCHI, PLASTIC, and IMPACT experiments. Launched on 2008 February 4, the CME is tracked continuously from initiation to 1 AU using the SECCHI imagers on both STEREO spacecraft, and is then detected by the PLASTIC and IMPACT particle and field detectors on board STEREO-B. The CME is also detected in situ by ACE and SOHO/CELIAS at Earth's L1 Lagrangian point. The CME hits STEREO-B, ACE, and SOHO on 2008 February 7, but misses STEREO-A entirely. This event provides a good example of just how different the same event can look when viewed from different perspectives. We also demonstrate many ways in which the comprehensive and continuous coverage of this CME by STEREO improves confidence in our assessment of its kinematic behavior, with potential ramifications for space weather forecasting. The observations provide several lines of evidence in favor of the observable part of the CME being narrow in angular extent, a determination crucial for deciding how best to convert observed CME elongation angles from Sun-center to actual Sun-center distances.Comment: 27 pages, 10 figures, AASTEX v5.2, accepted by Ap

    Linear response of a grafted semiflexible polymer to a uniform force field

    Full text link
    We use the worm-like chain model to analytically calculate the linear response of a grafted semiflexible polymer to a uniform force field. The result is a function of the bending stiffness, the temperature, the total contour length, and the orientation of the field with respect to that of the grafted end. We also study the linear response of a worm-like chain with a periodic alternating sequence of positive and negative charges. This can be considered as a model for a polyampholyte with intrinsic bending siffness and negligible intramolecular interactions. We show how the finite intrinsic persistence length affects the linear response to the external field.Comment: 6 pages, 3 figure
    • …
    corecore