37 research outputs found
Prospect theory, mitigation and adaptation to climate change
Climate change is one of the most pressing challenges in current environmental policy. Appropriate policies intended to stimulate efficient adaptation and mitigation should not exclusively rely on the assumption of the homo oeconomicus, but take advantage of well-researched alternative behavioural patterns. Prospect theory provides a number of climate-relevant insights, such as the notion that evaluations of outcomes are reference dependent, and the relevance of perceived certainty of outcomes. This paper systematically reviews what prospect theory can offer to analyse mitigation and adaptation. It is shown that accounting for reference dependence and certainty effects contributes to a better understanding of some well-known puzzles in the climate debate, including (but not limited to) the different uptake of mitigation and adaptation amongst individuals and nations, the role of technical vs. financial adaptation, and the apparent preference for hard protection measures in coastal adaptation. Finally, concrete possibilities for empirical research on these effects are proposed
STERIC MASS ACTION MODEL FOR LACTOFERRIN ADSORPTION IN CRYOGEL WITH IMMOBILIZED COPPER IONS
Abstract Parameters of equilibrium adsorption obtained from experiments using immobilized metal affinity chromatography (IMAC) were used to evaluate the applicability of the steric mass-action (SMA) model to describe the adsorption of lactoferrin to cryogel resin under different conditions. The adsorption of lactoferrin on continuous supermacroporous cryogel with immobilized Cu2+ ions was evaluated in batch adsorption experiments at different pH (6-8) and temperature (293-313 K) values. Estimated values of the equilibrium constant (K) and characteristic number of binding sites (n) showed that these parameters decreased with increasing ionic strength, pH and temperature, while the nonlinear parameter, the steric factor (σ), increased with increasing ionic strength and temperature. Expressions correlating these parameters with pH, ionic strength and temperature were then derived
