12 research outputs found
Genetic diversity and risk factors for the transmission of antimicrobial resistance across human, animals and environmental compartments in East Africa: a review.
BACKGROUND
The emergence and spread of antimicrobial resistance (AMR) present a challenge to disease control in East Africa. Resistance to beta-lactams, which are by far the most used antibiotics worldwide and include the penicillins, cephalosporins, monobactams and carbapenems, is reducing options for effective control of both Gram-positive and Gram-negative bacteria. The World Health Organization, Food and Agricultural Organization and the World Organization for Animal Health have all advocated surveillance of AMR using an integrated One Health approach. Regional consortia also have strengthened collaboration to address the AMR problem through surveillance, training and research in a holistic and multisectoral approach. This review paper contains collective information on risk factors for transmission, clinical relevance and diversity of resistance genes relating to extended-spectrum beta-lactamase-producing (ESBL) and carbapenemase-producing Enterobacteriaceae, and Methicillin-resistant Staphylococcus aureus (MRSA) across the human, animal and environmental compartments in East Africa.
MAIN BODY
The review of the AMR literature (years 2001 to 2019) was performed using search engines such as PubMed, Scopus, Science Direct, Google and Web of Science. The search terms included 'antimicrobial resistance and human-animal-environment', 'antimicrobial resistance, risk factors, genetic diversity, and human-animal-environment' combined with respective countries of East Africa. In general, the risk factors identified were associated with the transmission of AMR. The marked genetic diversity due to multiple sequence types among drug-resistant bacteria and their replicon plasmid types sourced from the animal, human and environment were reported. The main ESBL, MRSA and carbapenem related genes/plasmids were the CTX-Ms (45.7%), SCCmec type III (27.3%) and IMP types (23.8%), respectively.
CONCLUSION
The high diversity of the AMR genes suggests there may be multiple sources of resistance bacteria, or the possible exchange of strains or a flow of genes amongst different strains due to transfer by mobile genetic elements. Therefore, there should be harmonized One Health guidelines for the use of antibiotics, as well as regulations governing their importation and sale. Moreover, the trend of ESBLs, MRSA and carbapenem resistant (CAR) carriage rates is dynamic and are on rise over time period, posing a public health concern in East Africa. Collaborative surveillance of AMR in partnership with regional and external institutions using an integrated One Health approach is required for expert knowledge and technology transfer to facilitate information sharing for informed decision-making
The signature of a T-cell response to KSHV persists across space and time in individuals with epidemic and endemic KS from Uganda
<p><span>Inadequate T-cell control of Kaposi sarcoma-associated herpesvirus (KSHV) infection predisposes to development of Kaposi sarcoma (KS), but little is known about the T-cell response to KSHV. Postulating that KS tumors contain abundant KSHV-specific T-cells, we performed transcriptional profiling and T-cell receptor (TCR) repertoire analysis of tumor biopsies from 144 Ugandan adults with KS. We show that CD8<strong><sup>+</sup></strong> T-cells and M2-polarized macrophages dominate the tumor micro-environment (TME). The TCR repertoire of KS tumor infiltrating lymphocytes (TIL) is shared across non-contiguous tumors and persists across time. Clusters of T-cells with predicted shared specificity for uncharacterized antigens, potentially encoded by KSHV, comprise ~25% of KS TIL, and are shared across tumors from different time points and individuals. Single-cell RNA-sequencing of blood identifies a non-proliferating effector memory phenotype and captured the TCRs in 14,698 putative KSHV-specific T-cells. These results suggest that a polyspecific KSHV-specific T-cell response inhibited by M2 macrophages exists within the KS TME, and provide a foundation for studies to define its specificity at a large scale.</span></p><p>This repository contains the supporting files for the manuscript "The signature of a T-cell response to KSHV persists across space and time in individuals with epidemic and endemic KS from Uganda". This data contains a subset of files required to recreate the figures from the manuscript. The codebase for the manuscript is avaiable on GitHub (https://github.com/shashidhar22/ks_manuscript)</p>
Phylogenetic groups and antimicrobial susceptibility patterns of uropathogenic Escherichia coli clinical isolates from patients at Mulago National Referral Hospital, Kampala, Uganda
Multidrug-Resistant and Carbapenemase-Producing Enterobacteriaceae in Addis Ababa, Ethiopia
Prevalence and Characterization of Carbapenem-Resistant Enterobacteriaceae Isolated from Mulago National Referral Hospital, Uganda
Carbapenemases have increasingly been reported in enterobacteriaceae worldwide. Most carbapenemases are plasmid encoded hence resistance can easily spread. Carbapenem-resistant enterobacteriaceae are reported to cause mortality in up to 50% of patients who acquire bloodstream infections. We set out to determine the burden of carbapenem resistance as well as establish genes encoding for carbapenemases in enterobacteriaceae clinical isolates obtained from Mulago National Referral Hospital, Uganda.This was a cross-sectional study with a total of 196 clinical isolates previously collected from pus swabs, urine, blood, sputum, tracheal aspirates, cervical swabs, endomentrial aspirates, rectal swabs, Vaginal swabs, ear swabs, products of conception, wound biopsy and amniotic fluid. All isolates were subjected to phenotypic carbapenemase screening using Boronic acid-based inhibition, Modified Hodge and EDTA double combined disk test. In addition, all the isolates were subjected to PCR assay to confirm presence of carbapenemase encoding genes.The study found carbapenemase prevalence of 22.4% (44/196) in the isolates using phenotypic tests, with the genotypic prevalence slightly higher at 28.6% (56/196). Over all, the most prevalent gene was blaVIM (21,10.7%), followed by blaOXA-48 (19, 9.7%), blaIMP (12, 6.1%), blaKPC (10, 5.1%) and blaNDM-1 (5, 2.6%). Among 56 isolates positive for 67 carbapenemase encoding genes, Klebsiella pneumonia was the species with the highest number (52.2%). Most 32/67(47.7%) of these resistance genes were in bacteria isolated from pus swabs.There is a high prevalence of carbapenemases and carbapenem-resistance encoding genes among third generation cephalosporins resistant Enterobacteriaceae in Uganda, indicating a danger of limited treatment options in this setting in the near future
