2,332 research outputs found

    Multi-agent collaborative search : an agent-based memetic multi-objective optimization algorithm applied to space trajectory design

    Get PDF
    This article presents an algorithm for multi-objective optimization that blends together a number of heuristics. A population of agents combines heuristics that aim at exploring the search space both globally and in a neighbourhood of each agent. These heuristics are complemented with a combination of a local and global archive. The novel agent-based algorithm is tested at first on a set of standard problems and then on three specific problems in space trajectory design. Its performance is compared against a number of state-of-the-art multi-objective optimization algorithms that use the Pareto dominance as selection criterion: non-dominated sorting genetic algorithm (NSGA-II), Pareto archived evolution strategy (PAES), multiple objective particle swarm optimization (MOPSO), and multiple trajectory search (MTS). The results demonstrate that the agent-based search can identify parts of the Pareto set that the other algorithms were not able to capture. Furthermore, convergence is statistically better although the variance of the results is in some cases higher

    Nose-Hoover sampling of quantum entangled distribution functions

    Full text link
    While thermostated time evolutions stand on firm grounds and are widely used in classical molecular dynamics (MD) simulations, similar methods for quantum MD schemes are still lacking. In the special case of a quantum particle in a harmonic potential, it has been shown that the framework of coherent states permits to set up equations of motion for an isothermal quantum dynamics. In the present article, these results are generalized to indistinguishable quantum particles. We investigate the consequences of the (anti-)symmetry of the many-particle wavefunction which leads to quantum entangled distribution functions. The resulting isothermal equations of motion for bosons and fermions contain new terms which cause Bose-attraction and Pauli-blocking. Questions of ergodicity are discussed for different coupling schemes.Comment: 15 pages, 4 figures, submitted to PHYSICA A. More information at http://www.physik.uni-osnabrueck.de/makrosysteme

    Excitation spectrum and instability of a two-species Bose-Einstein condensate

    Full text link
    We numerically calculate the density profile and excitation spectrum of a two-species Bose-Einstein condensate for the parameters of recent experiments. We find that the ground state density profile of this system becomes unstable in certain parameter regimes, which leads to a phase transition to a new stable state. This state displays spontaneously broken cylindrical symmetry. This behavior is reflected in the excitation spectrum: as we approach the phase transition point, the lowest excitation frequency goes to zero, indicating the onset of instability in the density profile. Following the phase transition, this frequency rises again.Comment: 8 pages, 5 figures, uses REVTe

    Analysis of some global optimization algorithms for space trajectory design

    Get PDF
    In this paper, we analyze the performance of some global search algorithms on a number of space trajectory design problems. A rigorous testing procedure is introduced to measure the ability of an algorithm to identify the set of ²-optimal solutions. From the analysis of the test results, a novel algorithm is derived. The development of the novel algorithm starts from the redefinition of some evolutionary heuristics in the form of a discrete dynamical system. The convergence properties of this discrete dynamical system are used to derive a hybrid evolutionary algorithm that displays very good performance on the particular class of problems presented in this paper

    Generation of macroscopic quantum-superposition states by linear coupling to a bath

    Full text link
    We demonstrate through an exactly solvable model that collective coupling to any thermal bath induces effectively nonlinear couplings in a quantum many-body (multi-spin) system. The resulting evolution can drive an uncorrelated large-spin system with high probability into a macroscopic quantum-superposition state. We discuss possible experimental realizations.Comment: 4 pages, 2 figures, Physical Review Letters (in press

    Dynamical decoherence in a cavity with a large number of two-level atoms

    Full text link
    We consider a large number of two-level atoms interacting with the mode of a cavity in the rotating-wave approximation (Tavis-Cummings model). We apply the Holstein-Primakoff transformation to study the model in the limit of the number of two-level atoms, all in their ground state, becoming very large. The unitary evolution that we obtain in this approximation is applied to a macroscopic superposition state showing that, when the coherent states forming the superposition are enough distant, then the state collapses on a single coherent state describing a classical radiation mode. This appear as a true dynamical effect that could be observed in experiments with cavities.Comment: 9 pages, no figures. This submission substitutes paper quant-ph/0212148 that was withdrawn. Version accepted for publication in Journal of Physics B: Atomic, Molecular & Optical Physic

    Two-species magneto-optical trap with 40K and 87Rb

    Full text link
    We trap and cool a gas composed of 40K and 87Rb, using a two-species magneto-optical trap (MOT). This trap represents the first step towards cooling the Bose-Fermi mixture to quantum degeneracy. Laser light for the MOT is derived from laser diodes and amplified with a single high power semiconductor amplifier chip. The four-color laser system is described, and the single-species and two-species MOTs are characterized. Atom numbers of 1x10^7 40K and 2x10^9 87Rb are trapped in the two-species MOT. Observation of trap loss due to collisions between species is presented and future prospects for the experiment are discussed.Comment: 4 pages, 4 figures; accepted for publication in Physical Review

    Spin correlation and Discrete symmetry in Spinor Bose-Einstein Condensates

    Full text link
    We study spin correlations in Bose-Einstein condensates of spin 1 bosons with scatterings dominated by a total spin equal 2 channel. We show the low energy spin dynamics in the system can be mapped into an o(n)o(n) nonlinear sigma model(NLσ\sigmaM). n=3n=3 at the zero magnetic field limit and n=2n=2 in the presence of weak magnetic fields. In an ordered phase, the ground state has a hidden Z2Z_2 symmetry and is degenerate under the group [U(1)×Sn1]/Z2[U(1)\times S^{n-1}]/Z_2. We explore consequences of the hidden symmetry and propose some measurements to probe it.Comment: 4 pages; published version in Phys. Rev. Lett. vol 87, 080401-1(2001

    Cooling the Collective Motion of Trapped Ions to Initialize a Quantum Register

    Full text link
    We report preparation in the ground state of collective modes of motion of two trapped 9Be+ ions. This is a crucial step towards realizing quantum logic gates which can entangle the ions' internal electronic states. We find that heating of the modes of relative ion motion is substantially suppressed relative to that of the center-of-mass modes, suggesting the importance of these modes in future experiments.Comment: 5 pages, including 3 figures. RevTeX. PDF and PostScript available at http://www.bldrdoc.gov/timefreq/ion/qucomp/papers.htm . final (published) version. Eq. 1 and Table 1 slightly different from original submissio
    corecore