5,209 research outputs found
Phenomenology of High Energy Neutrinos in Low-Scale Quantum Gravity Models
We show that neutrino telescopes, optimized for detecting neutrinos of TeV to
PeV energy, can reveal threshold effects associated with TeV-scale gravity. The
signature is an increase with energy of the cross section beyond what is
predicted by the Standard Model. The advantage of the method is that the
neutrino cross section is measured in an energy region where i) the models are
characteristically distinguishable and ii) the Standard Model neutrino cross
section can be reliably calculated so that any deviation can be conclusively
identified.Comment: 4 pages, Revtex (PRL format), 4 postscript figures. Version to appear
in Physical Review Letter
Theory of Local Dynamical Magnetic Susceptibilities from the Korringa-Kohn-Rostoker Green Function Method
Within the framework of time-dependent density functional theory combined
with the Korringa-Kohn-Rostoker Green function formalism, we present a real
space methodology to investigate dynamical magnetic excitations from
first-principles. We set forth a scheme which enables one to deduce the correct
effective Coulomb potential needed to preserve the spin-invariance signature in
the dynamical susceptibilities, i.e. the Goldstone mode. We use our approach to
explore the spin dynamics of 3d adatoms and different dimers deposited on a
Cu(001) with emphasis on their decay to particle-hole pairs.Comment: 32 pages (preprint), 6 figures, one tabl
Simple analysis of off-axis solenoid fields using the scalar magnetostatic potential: application to a Zeeman-slower for cold atoms
In a region free of currents, magnetostatics can be described by the Laplace
equation of a scalar magnetic potential, and one can apply the same methods
commonly used in electrostatics. Here we show how to calculate the general
vector field inside a real (finite) solenoid, using only the magnitude of the
field along the symmetry axis. Our method does not require integration or
knowledge of the current distribution, and is presented through practical
examples, including a non-uniform finite solenoid used to produce cold atomic
beams via laser cooling. These examples allow educators to discuss the
non-trivial calculation of fields off-axis using concepts familiar to most
students, while offering the opportunity to introduce important advancements of
current modern research.Comment: 6 pages. Accepted in the American Journal of Physic
Spin Orbit Coupling and Spin Waves in Ultrathin Ferromagnets: The Spin Wave Rashba Effect
We present theoretical studies of the influence of spin orbit coupling on the
spin wave excitations of the Fe monolayer and bilayer on the W(110) surface.
The Dzyaloshinskii-Moriya interaction is active in such films, by virtue of the
absence of reflection symmetry in the plane of the film. When the magnetization
is in plane, this leads to a linear term in the spin wave dispersion relation
for propagation across the magnetization. The dispersion relation thus assumes
a form similar to that of an energy band of an electron trapped on a
semiconductor surfaces with Rashba coupling active. We also show SPEELS
response functions that illustrate the role of spin orbit coupling in such
measurements. In addition to the modifications of the dispersion relations for
spin waves, the presence of spin orbit coupling in the W substrate leads to a
substantial increase in the linewidth of the spin wave modes. The formalism we
have developed applies to a wide range of systems, and the particular system
explored in the numerical calculations provides us with an illustration of
phenomena which will be present in other ultrathin ferromagnet/substrate
combinations
Bragg Spectroscopy of Vortex Lattices in Bose-Einstein condensates
We have measured the velocity field of a vortex lattice within a sodium
Bose-Einstein condensate using Bragg scattering. The phase gradient of the
macroscopic wavefunction was mapped into the spatial structure of the
diffracted atom cloud, allowing for single shot measurement of the rotation
parameters. A combination of spectral and spatial information yields a complete
description of the superfluid flow, coarse-grained over the lattice structure,
including direct and independent measurements of the rate and sense of
rotation. Signatures of the microscopic quantum rotation have also been
observed.Comment: 5 pages, 5 Figures, A movie built from the CM data is available in
our Webpage: http://www.physics.gatech.edu/chandra/index.htm; added Fig.5
presents new data, showing signatures of the microscopic vortex structure in
the diffracted clou
- …
