167 research outputs found

    Proof of anthocyanins in the carnivorous plant genus Nepenthes

    Get PDF
    Yellow to red colored betalains are a chemotaxonomic feature of Caryophyllales, while in most other plant taxa, anthocyanins are responsible for these colors. The carnivorous plant family Nepenthaceae belongs to Caryophyllales; here, red‐pigmented tissues seem to attract insect prey. Strikingly, the chemical nature of red color in Nepenthes has never been elucidated. Although belonging to Caryophyllales, in Nepenthes, some molecular evidence supports the presence of anthocyanins rather than betalains. However, there was previously no direct chemical proof of this. Using ultra‐high‐performance liquid chromatography‐electrospray ionization‐high‐resolution mass spectrometry, we identified cyanidin glycosides in Nepenthes species and tissues. Further, we reveal the existence of a complete set of constitutively expressed anthocyanin biosynthetic genes in Nepenthes. Thus, here we finally conclude the long‐term open question regarding red pigmentation in Nepenthaceae

    The study of hormonal metabolism of Trincadeira and Syrah cultivars indicates new roles of salicylic acid, jasmonates, ABA and IAA during grape ripening and upon infection with Botrytis cinerea

    Get PDF
    Hormones play an important role in fruit ripening and in response to biotic stress. Nevertheless, analyses of hormonal profiling during plant development and defense are scarce. In this work, changes in hormonal metabolism in grapevine (Vitis vinifera) were compared between a susceptible (Trincadeira) and a tolerant (Syrah) variety during grape ripening and upon infection with Botrytis cinerea. Infection of grapes with the necrotrophic pathogen Botrytis cinerea leads to significant economic losses worldwide. Peppercorn-sized fruits were infected in the field and mock-treated and infected berries were collected at green, veraison and harvest stages for hormone analysis and targeted qPCR analysis of genes involved in hormonal metabolism and signaling. Results indicate a substantial reprogramming of hormonal metabolism during grape ripening and in response to fungal attack. Syrah and Trincadeira presented differences in the metabolism of abscisic acid (ABA), indole-3-acetic acid (IAA) and jasmonates during grape ripening that may be connected to fruit quality. On the other hand, high basal levels of salicylic acid (SA), jasmonates and IAA at an early stage of ripening, together with activated SA, jasmonates and IAA signaling, likely enable a fast defense response leading to grape resistance/ tolerance towards B. cinerea. The balance among the different phytohormones seems to depend on the ripening stage and on the intra-specific genetic background and may be fundamental in providing resistance or susceptibility. In addition, this study indicated the involvement of SA and IAA in defense against necrotrophic pathogens and gains insights into possible strategies for conventional breeding and/or gene editing aiming at improving grape quality and grape resistance against Botrytis cinerea

    Aequorin-based measurements of intracellular Ca(2+)-signatures in plant cells

    Get PDF
    Due to the involvement of calcium as a main second messenger in the plant signaling pathway, increasing interest has been focused on the calcium signatures supposed to be involved in the patterning of the specific response associated to a given stimulus. In order to follow these signatures we described here the practical approach to use the non-invasive method based on the aequorin technology. Besides reviewing the advantages and disadvantages of this method we report on results showing the usefulness of aequorin to study the calcium response to biotic (elicitors) and abiotic stimuli (osmotic shocks) in various compartments of plant cells such as cytosol and nucleus

    Does mycorrhization influence herbivore-induced volatile emission in Medicago truncatula?

    Get PDF
    Symbiosis with mycorrhizal fungi substantially impacts secondary metabolism and defensive traits of colonised plants. In the present study, we investigated the influence of mycorrhization (Glomus intraradices) on inducible indirect defences against herbivores using the model legume Medicago truncatula. Volatile emission by mycorrhizal and non-mycorrhizal plants was measured in reaction to damage inflicted by Spodoptera spp. and compared to the basal levels of volatile emission by plants of two different cultivars. Emitted volatiles were recorded using closed-loop stripping and gas chromatography/mass spectrometry. The documented volatile patterns were evaluated using multidimensional scaling to visualise patterns and stepwise linear discriminant analysis to distinguish volatile blends of plants with distinct physiological status and genetic background. Volatile blends emitted by different cultivars of M. truncatula prove to be clearly distinct, whereas mycorrhization only slightly influenced herbivore-induced volatile emissions. Still, the observed differences were sufficient to create classification rules to distinguish mycorrhizal and non-mycorrhizal plants by the volatiles emitted. Moreover, the effect of mycorrhization turned out to be opposed in the two cultivars examined. Root symbionts thus seem to alter indirect inducible defences of M. truncatula against insect herbivores. The impact of this effect strongly depends on the genetic background of the plant and, hence, in part explains the highly contradictory results on tripartite interactions gathered to date

    Herbivore-induced terpenoid emission in Medicago truncatula: concerted action of jasmonate, ethylene and calcium signaling

    Get PDF
    Plant volatiles emitted by Medicago truncatula in response to feeding larvae of Spodoptera exigua are composed of a complex blend of terpenoids. The cDNAs of three terpene synthases (TPSs), which contribute to the blend of terpenoids, were cloned from M. truncatula. Their functional characterization proved MtTPS1 to be a β-caryophyllene synthase and MtTPS5 to be a multi-product sesquiterpene synthase. MtTPS3 encodes a bifunctional enzyme producing (E)-nerolidol and geranyllinalool (precursors of C11 and C16 homoterpenes) from different prenyl diphosphates serving as substrates. The addition of jasmonic acid (JA) induced expression of the TPS genes, but terpenoid emission was higher from plants treated with JA and the ethylene precursor 1-amino-cyclopropyl-1-carboxylic acid. Compared to infested wild-type M. truncatula plants, lower amounts of various sesquiterpenes and a C11–homoterpene were released from an ethylene-insensitive mutant skl. This difference coincided with lower transcript levels of MtTPS5 and of 1-deoxy-d-xylulose-5-phosphate synthase (MtDXS2) in the damaged skl leaves. Moreover, ethephon, an ethylene-releasing compound, modified the extent and mode of the herbivore-stimulated Ca2+ variations in the cytoplasm that is necessary for both JA and terpene biosynthesis. Thus, ethylene contributes to the herbivory-induced terpenoid biosynthesis at least twice: by modulating both early signaling events such as cytoplasmic Ca2+-influx and the downstream JA-dependent biosynthesis of terpenoids

    Messages from the other side: parasites receive damage cues from their host plants

    Get PDF
    As sessile organisms, plants rely on their environment for cues indicating imminent herbivory. These cues can originate from tissues on the same plant or from different individuals. Since parasitic plants form vascular connections with their host, parasites have the potential to receive cues from hosts that allow them to adjust defenses against future herbivory. However, the role of plant communication between hosts and parasites for herbivore defense remains poorly investigated. Here we examined the effects of damage to lupine hosts (Lupinus texensis) on responses of the attached hemiparasite (Castilleja indivisa), and indirectly, on a specialist herbivore of the parasite, buckeyes (Junonia coenia). Lupines produce alkaloids as defenses against herbivore that can be taken up by the parasite. We found that damage to lupine host plants by beet armyworm (Spodoptera exigua) significantly increased jasmonic acid (JA) levels in both the lupine host and parasite, suggesting uptake of phytohormones or priming of parasite defenses using host cues. However, lupine host damage did not induce changes in alkaloid levels in the hosts or parasites. Interestingly, the parasite had substantially higher concentrations of JA and alkaloids compared to lupine host plants. Buckeye herbivores consumed more parasite tissue when attached to damaged compared to undamaged hosts. We hypothesize that increased JA due to lupine host damage induced higher iridoid glycosides in the parasite, which are feeding stimulants for this specialist herbivore. Our results demonstrate that damage to hosts may affect both parasites and associated herbivores, indicating cascading effects of host damage on multiple trophic levels

    Increased Terpenoid Accumulation in Cotton (Gossypium hirsutum) Foliage is a General Wound Response

    Get PDF
    The subepidermal pigment glands of cotton accumulate a variety of terpenoid products, including monoterpenes, sesquiterpenes, and terpenoid aldehydes that can act as feeding deterrents against a number of insect herbivore species. We compared the effect of herbivory by Spodoptera littoralis caterpillars, mechanical damage by a fabric pattern wheel, and the application of jasmonic acid on levels of the major representatives of the three structural classes of terpenoids in the leaf foliage of 4-week-old Gossypium hirsutum plants. Terpenoid levels increased successively from control to mechanical damage, herbivory, and jasmonic acid treatments, with E-β-ocimene and heliocide H1 and H4 showing the highest increases, up to 15-fold. Herbivory or mechanical damage to older leaves led to terpenoid increases in younger leaves. Leaf-by-leaf analysis of terpenes and gland density revealed that higher levels of terpenoids were achieved by two mechanisms: (1) increased filling of existing glands with terpenoids and (2) the production of additional glands, which were found to be dependent on damage intensity. As the relative response of individual terpenoids did not differ substantially among herbivore, mechanical damage, and jasmonic acid treatments, the induction of terpenoids in cotton foliage appears to represent a non-specific wound response mediated by jasmonic acid
    corecore