70 research outputs found

    Evaluation of the impact of universal testing for gestational diabetes mellitus on maternal and neonatal health outcomes: a retrospective analysis

    Get PDF
    Background: Gestational diabetes (GDM) affects a substantial proportion of women in pregnancy and is associated with increased risk of adverse perinatal and long term outcomes. Treatment seems to improve perinatal outcomes, the relative effectiveness of different strategies for identifying women with GDM however is less clear. This paper describes an evaluation of the impact of a change in policy from selective risk factor based offering, to universal offering of an oral glucose tolerance test (OGTT) to identify women with GDM on maternal and neonatal outcomes. Methods: Retrospective six year analysis of 35,674 births at the Women’s and Newborn unit, Bradford Royal Infirmary, United Kingdom. Results: The proportion of the whole obstetric population diagnosed with GDM increased almost fourfold following universal offering of an OGTT compared to selective offering of an OGTT; Rate Ratio (RR) 3.75 (95% CI 3.28 to 4.29), the proportion identified with severe hyperglycaemia doubled following the policy change; 1.96 (1.50 to 2.58). The case detection rate however, for GDM in the whole population and severe hyperglycaemia in those with GDM reduced by 50-60%; 0.40 (0.35 to 0.46) and 0.51 (0.39 to 0.67) respectively. Universally offering an OGTT was associated with an increased induction of labour rate in the whole obstetric population and in women with GDM; 1.43 (1.35 to 1.50) and 1.21 (1.00 to1.49) respectively. Caesarean section, macrosomia and perinatal mortality rates in the whole population were similar. For women with GDM, rate of caesarean section; 0.70 (0.57 to 0.87), macrosomia; 0.22 (0.15 to 0.34) and perinatal mortality 0.12 (0.03 to 0.46) decreased following the policy change. Conclusions: Universally offering an OGTT was associated with increased identification of women with GDM and severe hyperglycaemia and with neonatal benefits for those with GDM. There was no evidence of benefit or adverse effects in neonatal outcomes in the whole obstetric population

    Foetal amplitude-integrated electroencephalography:proof of principle of a novel foetal monitoring technique in adult volunteers

    No full text
    Peripartum hypoxic neonatal brain injury cannot be accurately predicted with current foetal monitoring techniques. Neonatal brain monitoring through amplitude-integrated electroencephalography (aEEG) is utilised when brain injury is suspected. Intrapartum aEEG assessment may improve detection of foetal hypoxia, facilitating earlier intervention. Using different engineered configurations in adult volunteers (n = 18), we monitored aEEG through application of two foetal scalp electrodes (FSEs). This aided development of a novel signal splitter, our Foetal heart rate and aEEG Monitoring System (FEMS) to monitor aEEG intrapartum. We then compared FEMS with gold-standard EEG monitoring simultaneously in two adults. Average percentage of interpretable aEEG signal was 61.3%, with the FEMS obtaining 72.15%. EEG signal on the aEEG device consistently showed a similar trace to gold standard EEG. This study demonstrates feasibility of aEEG monitoring in adults with FEMS utilising FSE inputs. An intrapartum foetal study utilising FEMS is due to commence shortly. IMPACT STATEMENT What is already known on this subject? Cardiotography, the current gold standard in foetal monitoring, is not associated with a reduction in cerebral palsy or infant mortality rates. Neonatal amplitude-integrated electroencephalography (aEEG) is an established method of monitoring brain function to guide commencing cooling therapy in suspected hypoxic brain injury. Intrapartum animal studies have illustrated foetal EEG changes reflecting evolving hypoxia. What do the results of this study add? This study demonstrates aEEG monitoring in human adult volunteers through application of foetal scalp electrodes and use of a novel signal splitter. This Foetal heart rate and aEEG Monitoring System (FEMS) provided a good overall percentage of aEEG signal, consistently showing a similar trace to gold standard EEG. What the implications are of these findings for clinical practice and/or further research? This proof of principle study provides the first step in developing a novel intrapartum foetal monitoring technique to monitor foetal aEEG in labour. This provides an exciting prospect of transferring well established neonatal monitoring techniques to facilitate accurate brain function assessment intrapartum and early intervention to reduce hypoxic brain injury. An intrapartum foetal study of this technology is due to begin in the near future
    corecore