20 research outputs found
Performance assessment of time-domain optical brain imagers, part 1: basic instrumental performance protocol
open21siAbstract. Performance assessment of instruments devised for clinical applications is of key importance for validation and quality assurance. Two new protocols were developed and applied to facilitate the design and optimization of instruments for time-domain optical brain imaging within the European project nEUROPt. Here, we present the “Basic Instrumental Performance” protocol for direct measurement of relevant characteristics. Two tests are discussed in detail. First, the responsivity of the detection system is a measure of the overall efficiency to detect light emerging from tissue. For the related test, dedicated solid slab phantoms were developed and quantitatively spectrally characterized to provide sources of known radiance with nearly Lambertian angular characteristics. The responsivity of four time-domain optical brain imagers was found to be of the order of 0.1 m2 sr. The relevance of the responsivity measure is demonstrated by simulations of diffuse reflectance as a function of source-detector separation and optical properties. Second, the temporal instrument response function (IRF) is a critically important factor in determining the performance of time-domain systems. Measurements of the IRF for various instruments were combined with simulations to illustrate the impact of the width and shape of the IRF on contrast for a deep absorption change mimicking brain activation.H. Wabnitz; D. R. Taubert; M. Mazurenka; O. Steinkellner; A. Jelzow;R. Macdonald;D. Milej;P. Sawosz;M. Kacprzak;A. Liebert;R. Cooper;J. Hebden;A. Pifferi;A. Farina;I. Bargigia;D. Contini;M. Caffini;L. Zucchelli;L. Spinelli;R. Cubeddu;A. TorricelliH., Wabnitz; D. R., Taubert; M., Mazurenka; O., Steinkellner; A., Jelzow; R., Macdonald; D., Milej; P., Sawosz; M., Kacprzak; A., Liebert; R., Cooper; J., Hebden; Pifferi, ANTONIO GIOVANNI; Farina, Andrea; Bargigia, Ilaria; Contini, Davide; Caffini, Matteo; Zucchelli, LUCIA MARIA GRAZIA; Spinelli, Lorenzo; Cubeddu, Rinaldo; Torricelli, Alessandr
Determination of reference values for optical properties of liquid phantoms based on Intralipid and India ink
A multi-center study has been set up to accurately characterize the optical properties of diffusive liquid phantoms based on Intralipid and India ink at near-infrared (NIR) wavelengths. Nine research laboratories from six countries adopting different measurement techniques, instrumental set-ups, and data analysis methods determined at their best the optical properties and relative uncertainties of diffusive dilutions prepared with common samples of the two compounds. By exploiting a suitable statistical model, comprehensive reference values at three NIR wavelengths for the intrinsic absorption coefficient of India ink and the intrinsic reduced scattering coefficient of Intralipid-20% were determined with an uncertainty of about 2% or better, depending on the wavelength considered, and 1%, respectively. Even if in this study we focused on particular batches of India ink and Intralipid, the reference values determined here represent a solid and useful starting point for preparing diffusive liquid phantoms with accurately defined optical properties. Furthermore, due to the ready availability, low cost, long-term stability and batch-to-batch reproducibility of these compounds, they provide a unique fundamental tool for the calibration and performance assessment of diffuse optical spectroscopy instrumentation intended to be used in laboratory or clinical environment. Finally, the collaborative work presented here demonstrates that the accuracy level attained in this work for optical properties of diffusive phantoms is reliable
GPU accelerated Monte Carlo simulation of light propagation in inhomogeneous fluorescent turbid media: application to whole field CW imaging
Time-resolved imaging of fluorescent inclusions in optically turbid medium — phantom study
AbstractWe present results of application of a time-resolved optical system for imaging of fluorescence excited in an inclusion containing indocyanine green (ICG), and located in optically turbid medium. The developed imaging system enabled simultaneous acquisition of fluorescence and diffusive reflectance. Eight independent time-resolved measurement channels based on time-correlated single photon counting technique were applied. In four of these channels, used for the fluorescence detection, sets of filters were applied in order to block the excitation light. Fast optomechanical switches allowed us to illuminate sequentially nine different spots on the surface of the studied object and finally 4×4 pixels maps at excitation and emission wavelengths were obtained. A liquid phantom used in this study consists of the fish tank filed with a solution ofmilk and water with black ink added to obtain optical properties in the range of the optical properties typical for the living tissue. A gel ball of a diameter of 5 mm with precisely controlled concentration of ICG was immersed in the liquid. The measurements were performed for inclusion located at different depths and for various ICG concentrations in the gel ball and in the surrounding liquid. The recorded distributions of times of arrival (DTA) of fluorescence photons and times of flight (DTOF) of diffusely reflected photons were analyzed by calculation of their statistical moments. We observed specific changes in moments of the measured DTAs as a function of depth of immersion of the fluorescent inclusion in the medium. We noted also that the changes of moments depend significantly on concentration of the dye in the fluorescence inclusion as well as in the surrounding liquid.</jats:p
An algorithm for assessment of inflow and washout of optical contrast agent to the brain by analysis of time-resolved diffuse reflectance and fluorescence signals
Advantages of fluorescence over diffuse reflectance measurements tested in phantom experiments with dynamic inflow of ICG
AbstractTime-resolved measurements of diffuse reflectance and fluorescence were carried out using phantom with dynamic inflow of indocyanine green (ICG) in tubes located at different depths. Better sensitivity of fluorescence signals related to the inflow of the dye was observed in comparison to simultaneously acquired diffuse reflectance. Obtained results can be referred to results of in-vivo measurements. We have observed much larger amplitude of changes in relative number of detected photons, mean time of flight and variance of the distributions of times of arrival of fluorescence photons than amplitudes of respective parameters measured from diffuse reflectance distributions of times of flight of photons. The constructed phantom allows us to study influence of concentration of the dye in the tube and the surrounding medium as well as temporal relation between appearance of the boli in deeper and superficial tube. Results of the study were used in optimization of the time-resolved multichannel system for simultaneous monitoring of fluorescence and reflectance.</jats:p
<b>Validation of a Hyperspectral NIRS Method for Measuring Oxygen Saturation by Comparison to Time-Resolved NIRS</b>
Brain Perfusion Assessment by Optical Contrast Tracking Using Time-Resolved Fluorescence Detection
Assessment of cerebral perfusion in post-traumatic brain injury patients with the use of ICG-bolus tracking method
Human skull translucency: post mortem studies
Measurements of optical translucency of human skulls were carried out. An incandescent light source and a CCD camera were used to measure the distribution of light transmitted through the skull in 10 subjects post-mortem. We noticed that intra-individual differences in optical translucency may be up to 100 times but inter-individual translucency differences across the skull reach 10(5) times. Based on the measurement results, a “theoretical” experiment was simulated. Monte-Carlo calculations were used in order to evaluate the influence of the differences in optical translucency of the skull on results of NIRS measurements. In these calculations a functional stimulation was done, in which the oxyhemoglobin and deoxyhemoglobin concentrations in the brain cortex change by 5μM and −5μM respectively. The maximal discrepancies between assumed hemoglobin concentration changes and hemoglobin concentration changes estimated with Monte-Carlo simulation may reach 50% depending of the translucency of the skull
