322 research outputs found

    Improving the Stability of the EC1 Domain of E-cadherin by Thiol Alkylation of the Cysteine Residue

    Get PDF
    The objective of this work was to improve chemical and physical stability of the EC1 protein derived from the extracellular domain of E-cadherin. In solution, the EC1 protein has been shown to form a covalent dimer via a disulfide bond formation followed by physical aggregation and precipitation. To improve solution stability of the EC1 protein, the thiol group of the Cys13 residue in EC1 was alkylated with iodoacetate, iodoacetamide, and maleimide-PEG-5000 to produce thioether derivatives called EC1-IA, EC1-IN, and EC1-PEG. The physical and chemical stabilities of the EC1 derivatives and the parent EC1 were evaluated at various pHs (3.0, 7.0, and 9.0) and temperatures (0, 3, 70 °C). The structural characteristics of each molecule were analyzed by circular dichroism (CD) and fluorescence spectroscopy and the derivatives have similar secondary structure as the parent EC1 protein at pH 7.0. Both EC1-IN and EC1-PEG derivatives showed better chemical and physical stability profiles than did the parent EC1 at pH 7.0. EC1-PEG had the best stability profile compared to EC1-IN and EC1 in solution under various conditions

    Structure-Function Analysis of Invasion Plasmid Antigen C (IpaC) from Shigella flexneri

    Get PDF
    Shigella flexneri causes a self-limiting gastroenteritis in humans, characterized by severe localized inflammation and ulceration of the colonic mucosa. Shigellosis most often targets young children in underdeveloped countries. Invasion plasmid antigen C (IpaC) has been identified as the primary effector protein for Shigella invasion of epithelial cells. Although an initial model of IpaC function has been developed, no detailed structural information is available that could assist in a better understanding of the molecular basis for its interactions with the host cytoskeleton and phospholipid membrane. We have therefore initiated structural studies of IpaC, IpaC I′, (residues 101–363 deleted), and IpaC ΔH (residues 63–170 deleted). The secondary and tertiary structure of the protein was examined as a function of temperature, employing circular dichroism and high resolution derivative absorbance techniques. ANS (8-anilino-1-napthalene sulfonic acid) was used to probe the exposure of the hydrophobic surfaces under different conditions. The interaction of IpaC and these mutants with a liposome model (liposomes with entrapped fluorescein) was also examined. Domain III (residues 261–363) was studied using linker-scanning mutagenesis. It was shown that domain III contains periodic, sequence-dependent activity, suggesting helical structure in this section of the protein. In addition to these structural studies, investigation into the actin nucleation properties of IpaC was conducted, and actin nucleation by IpaC and some of the mutants was exhibited. Structure-function relationships of IpaC are discussed

    Preformulation Characterization and the Effect of Ionic Excipients on the Stability of a Novel DB Fusion Protein

    Get PDF
    Shigella ssp cause bacillary dysentery (shigellosis) which has high global morbidity in young children and the elderly. The virulence of Shigella relies upon a type III secretion system (T3SS) which injects host altering effector proteins into targeted intestinal cells. The Shigella T3SS contains two components, invasion plasmid antigen D (IpaD) and invasion plasmid antigen B (IpaB), that were previously identified as broadly protective antigens. When IpaD and IpaB were co-expressed to give the DB fusion (DBF) protein, vaccine efficacy was further improved. Biophysical characterization under various pH conditions showed that DBF is most stable at pH 7 and 8 and loses its conformational integrity at 48 and 50 °C respectively. Forced degradation studies revealed significant effects on the secondary structure, tertiary structure and conformational stability of DBF. In the presence of phosphate buffers as well as other anionic excipients, DBF demonstrated a concentration dependent conformational stabilization. Molecular docking revealed potential polyanion binding sites in DBF that may interact with phytic acid. These sites can be exploited to stabilize the DBF protein. This work highlights potential destabilizing and stabilizing factors, which not only improves our understanding of the DBF protein but helps in future development of a stable Shigella vaccine

    Long-Term Consequences of Methamphetamine Exposure in Young Adults Are Exacerbated in Glial Cell Line-Derived Neurotrophic Factor Heterozygous Mice

    Get PDF
    Methamphetamine abuse in young adults has long-term deleterious effects on brain function that are associated with damage to monoaminergic neurons. Administration of glial cell line-derived neurotrophic factor (GDNF) protects dopamine neurons from the toxic effects of methamphetamine in animal models. Therefore, we hypothesized that a partial GDNF gene deletion would increase the susceptibility of mice to methamphetamine neurotoxicity during young adulthood and possibly increase age-related deterioration of behavior and dopamine function. Two weeks after a methamphetamine binge (4 x 10 mg/kg, i.p., at 2 h intervals), GDNF +/- mice had a significantly greater reduction of tyrosine hydroxylase immunoreactivity in the medial striatum, a proportionally greater depletion of dopamine and 3,4-dihydroxyphenylacetic acid (DOPAC) levels in the striatum, and a greater increase in activated microglia in the substantia nigra than wild-type mice. At 12 months of age, methamphetamine-treated GDNF +/- mice exhibited less motor activity and lower levels oftyrosine hydroxylase-immunoreactivity, dopamine, DOPAC, and serotoninthanwild-typemice. Greater striatal dopaminetransporter activity in GDNF +/- mice may underlie their differential response to methamphetamine. These data suggest the possibility that methamphetamine use in young adults, when combined with lower levels of GDNF throughout life, may precipitate the appearance of parkinsonian-like behaviors during aging

    High-Throughput Biophysical Analysis and Data Visualization of Conformational Stability of an IgG1 Monoclonal Antibody (mAb) After Deglycosylation

    Get PDF
    The structural integrity and conformational stability of an IgG1 monoclonal antibody (mAb), after partial and complete enzymatic removal of the N-linked Fc glycan, was compared to the untreated mAb over a wide range of temperature (10° to 90°C) and solution pH (3 to 8) using circular dichroism, fluorescence spectroscopy, and static light scattering combined with data visualization employing empirical phase diagrams (EPDs). Subtle to larger stability differences between the different glycoforms were observed. Improved detection of physical stability differences was then demonstrated over narrower pH range (4.0-6.0) using smaller temperature increments, especially when combined with an alternative data visualization method (radar plots). Differential scanning calorimetry and differential scanning fluorimetry were then utilized and also showed an improved ability to detect differences in mAb glycoform physical stability. Based on these results, a two step methodology was used in which mAb glycoform conformational stability is first screened with a wide variety of instruments and environmental stresses, followed by a second evaluation with optimally sensitive experimental conditions, analytical techniques and data visualization methods. With this approach, high-throughput biophysical analysis to assess relatively subtle conformational stability differences in protein glycoforms is demonstrated

    Using Empirical Phase Diagrams to Understand the Role of Intramolecular Dynamics in Immunoglobulin G Stability

    Get PDF
    Understanding the relationship between protein dynamics and stability is of paramount importance to the fields of biology and pharmaceutics. Clarifying this relationship is complicated by the large amount of experimental data that must be generated and analyzed if motions that exist over the wide range of timescales are to be included. To address this issue, we propose an approach that utilizes a multidimensional vector-based empirical phase diagram (EPD) to analyze a set of dynamic results acquired across a temperature-pH perturbation plane. This approach is applied to a humanized immunoglobulin G1 (IgG1), a protein of major biological and pharmaceutical importance whose dynamic nature is linked to its multiple biological roles. Static and dynamic measurements are used to characterize the IgG and to construct both static and dynamic empirical phase diagrams. Between pH 5 and 8, a single, pH-dependent transition is observed that corresponds to thermal unfolding of the IgG. Under more acidic conditions, evidence exists for the formation of a more compact, aggregation resistant state of the immunoglobulin, known as A-form. The dynamics-based EPD presents a considerably more detailed pattern of apparent phase transitions over the temperature-pH plane. The utility and potential applications of this approach are discussed

    Effects of vigabatrin, an irreversible GABA transaminase inhibitor, on ethanol reinforcement and ethanol discriminative stimuli in mice

    Get PDF
    We tested the hypothesis that the irreversible gamma-amino butyric acid (GABA) transaminase inhibitor, Îł-vinyl GABA (Vigabatrin; VGB) would reduce ethanol reinforcement and enhance the discriminative stimulus effect of ethanol, effectively reducing ethanol intake. The present studies used adult C57BL/6J (B6) mice in well-established operant, two-bottle choice consumption, locomotor activity and ethanol discrimination procedures, to examine comprehensively the effects of VGB on ethanol-supported behaviors. VGB dose-dependently reduced operant responding for ethanol as well as ethanol consumption for long periods of time. Importantly, a low dose (200 mg/kg) of VGB was selective for reducing ethanol responding without altering intake of food or water reinforcement. Higher VGB doses (>200 mg/kg) still reduced ethanol intake, but also significantly increased water consumption and, more modestly, increased food consumption. While not affecting locomotor activity on its own, VGB interacted with ethanol to reduce the stimulatory effects of ethanol on locomotion. Finally, VGB (200 mg/kg) significantly enhanced the discriminative stimulus effects of ethanol as evidenced by significant left-ward and up-ward shifts in ethanol generalization curves. Interestingly, VGB treatment was associated with slight increases in blood ethanol concentrations. The reduction in ethanol intake by VGB appears to be related to the ability of VGB to potentiate the pharmacological effects of ethanol

    High-Resolution Epitope Positioning of a Large Collection of Neutralizing and Nonneutralizing Single-Domain Antibodies on the Enzymatic and Binding Subunits of Ricin Toxin

    Get PDF
    We previously produced a heavy-chain-only antibody (Ab) VH domain (VHH)-displayed phage library from two alpacas that had been immunized with ricin toxoid and nontoxic mixtures of the enzymatic ricin toxin A subunit (RTA) and binding ricin toxin B subunit (RTB) (D. J. Vance, J. M. Tremblay, N. J. Mantis, and C. B. Shoemaker, J Biol Chem 288:36538–36547, 2013, https://doi.org/10.1074/jbc.M113.519207). Initial and subsequent screens of that library by direct enzyme-linked immunosorbent assay (ELISA) yielded more than two dozen unique RTA- and RTB-specific VHHs, including 10 whose structures were subsequently solved in complex with RTA. To generate a more complete antigenic map of ricin toxin and to define the epitopes associated with toxin-neutralizing activity, we subjected the VHH-displayed phage library to additional “pannings” on both receptor-bound ricin and antibody-captured ricin. We now report the full-length DNA sequences, binding affinities, and neutralizing activities of 68 unique VHHs: 31 against RTA, 33 against RTB, and 4 against ricin holotoxin. Epitope positioning was achieved through cross-competition ELISAs performed with a panel of monoclonal antibodies (MAbs) and verified, in some instances, with hydrogen-deuterium exchange mass spectrometry. The 68 VHHs grouped into more than 20 different competition bins. The RTA-specific VHHs with strong toxin-neutralizing activities were confined to bins that overlapped two previously identified neutralizing hot spots, termed clusters I and II. The four RTB-specific VHHs with potent toxin-neutralizing activity grouped within three adjacent bins situated at the RTA-RTB interface near cluster II. These results provide important insights into epitope interrelationships on the surface of ricin and delineate regions of vulnerability that can be exploited for the purpose of vaccine and therapeutic development

    A Collection of Single-Domain Antibodies that Crowd Ricin Toxin’s Active Site

    Get PDF
    This work is licensed under a Creative Commons Attribution 4.0 International License.In this report, we used hydrogen exchange-mass spectrometry (HX-MS) to identify the epitopes recognized by 21 single-domain camelid antibodies (VHHs) directed against the ribosome-inactivating subunit (RTA) of ricin toxin, a biothreat agent of concern to military and public health authorities. The VHHs, which derive from 11 different B-cell lineages, were binned together based on competition ELISAs with IB2, a monoclonal antibody that defines a toxin-neutralizing hotspot (“cluster 3”) located in close proximity to RTA’s active site. HX-MS analysis revealed that the 21 VHHs recognized four distinct epitope subclusters (3.1–3.4). Sixteen of the 21 VHHs grouped within subcluster 3.1 and engage RTA α-helices C and G. Three VHHs grouped within subcluster 3.2, encompassing α-helices C and G, plus α-helix B. The single VHH in subcluster 3.3 engaged RTA α-helices B and G, while the epitope of the sole VHH defining subcluster 3.4 encompassed α-helices C and E, and β-strand h. Modeling these epitopes on the surface of RTA predicts that the 20 VHHs within subclusters 3.1–3.3 physically occlude RTA’s active site cleft, while the single antibody in subcluster 3.4 associates on the active site’s upper rim.National Institutes of Allergy and Infectious Diseases, National Institutes of Health (HHSN272201400021C
    • …
    corecore