45 research outputs found

    Pacing accuracy during an incremental step test in adolescent swimmers

    Get PDF
    To assess pacing accuracy in a group of adolescent swimmers during an incremental step test. Fifteen well-trained swimmers (age 15±1.5 years; height 170.2±8.8 cm; mass 60.2±6.6 kg), completed two 7×200 m tests, separated by ~72 hours. They swam to a predetermined incrementally increasing pace per step and were instructed to swim at even pace. Upon completion of each step, rating of perceived exertion, heart rate and blood lactate were recorded. Significant differences observed for both trials between actual and predicted swim time (P<0.05). Significant differences also observed between the first and second 100 m of each step in trial 1 for step 1 (P=0.001, effect size [ES] =0.54), step 2 (P=0.0001, ES =0.57), step 4 (P=0.0001, ES =0.53), step 5 (P=0.005, ES =0.65), step 6 (P=0.0001, ES =0.50), and step 7 (P=0.0001, ES =0.70). Similar responses witnessed for trial 2 (P<0.05). Findings suggest that the finite anaerobic capacity was engaged sooner than would normally be anticipated, as a function of an inability to regulate pace. This is proposed to be a consequence of the volume of exposure to the biological and psychological sensations and cognitive developmental status. Given the apparent error in pacing judgment exhibited in this population group, caution should be applied when adopting such tests to monitor training responses with adolescent athletes, and alternate means of modulating pace be investigated

    Alternative Metabolic Strategies are Employed by Endurance Runners of Different Body Sizes; Implications for Human Evolution

    Get PDF
    OBJECTIVE: A suite of adaptations facilitating endurance running (ER) evolved within the hominin lineage. This may have improved our ability to reach scavenging sites before competitors, or to hunt prey over long distances. Running economy (RE) is a key determinant of endurance running performance, and depends largely on the magnitude of force required to support body mass. However, numerous environmental factors influence body mass, thereby significantly affecting RE. This study tested the hypothesis that alternative metabolic strategies may have emerged to enable ER in individuals with larger body mass and poor RE. METHODS: A cohort of male (n = 25) and female (n = 19) ultra-endurance runners completed submaximal and exhaustive treadmill protocols to determine RE, and V̇O2Max. RESULTS: Body mass was positively associated with sub-maximal oxygen consumption at both LT1 (male r=0.66, p<0.001; female LT1 r=0.23, p=0.177) and LT2 (male r=0.59, p=0.001; female r=0.23, p=0.183) and also with V̇O2Max (male r=0.60, p=0.001; female r=0.41, p=0.046). Additionally, sub-maximal oxygen consumption varied positively with V̇O2Max in both male (LT1 r=0.54, p=0.003; LT2 r=0.77, p<0.001) and female athletes (LT1 r=0.88, p<0.001; LT2 r=0.92, p<0.001). CONCLUSIONS: The results suggest that, while individuals with low mass and good RE can glide economically as they run, larger individuals can compensate for the negative effects their mass has on RE by increasing their capacity to consume oxygen. The elevated energy expenditure of this low-economy high-energy turnover approach to ER may bring costs associated with energy diversion away from other physiological processes, however

    STANDARDISATION OF THE NITROBLUE-TETRAZOLIUM TEST

    No full text
    corecore