1,335 research outputs found
Driving Rydberg-Rydberg transitions from a co-planar microwave waveguide
The coherent interaction between ensembles of helium Rydberg atoms and
microwave fields in the vicinity of a solid-state co-planar waveguide is
reported. Rydberg-Rydberg transitions, at frequencies between 25 GHz and 38
GHz, have been studied for states with principal quantum numbers in the range
30 - 35 by selective electric-field ionization. An experimental apparatus
cooled to 100 K was used to reduce effects of blackbody radiation.
Inhomogeneous, stray electric fields emanating from the surface of the
waveguide have been characterized in frequency- and time-resolved measurements
and coherence times of the Rydberg atoms on the order of 250 ns have been
determined.Comment: 5 pages, 5 figure
Multistage Zeeman deceleration of metastable neon
A supersonic beam of metastable neon atoms has been decelerated by exploiting
the interaction between the magnetic moment of the atoms and time-dependent
inhomogeneous magnetic fields in a multistage Zeeman decelerator. Using 91
deceleration solenoids, the atoms were decelerated from an initial velocity of
580m/s to final velocities as low as 105m/s, corresponding to a removal of more
than 95% of their initial kinetic energy. The phase-space distribution of the
cold, decelerated atoms was characterized by time-of-flight and imaging
measurements, from which a temperature of 10mK was obtained in the moving frame
of the decelerated sample. In combination with particle-trajectory simulations,
these measurements allowed the phase-space acceptance of the decelerator to be
quantified. The degree of isotope separation that can be achieved by multistage
Zeeman deceleration was also studied by performing experiments with pulse
sequences generated for Ne and Ne.Comment: 16 pages, 15 figure
Collective shuttling of attracting particles in asymmetric narrow channels
The rectification of a single file of attracting particles subjected to a low
frequency ac drive is proposed as a working mechanism for particle shuttling in
an asymmetric narrow channel. Increasing the particle attraction results in the
file condensing, as signalled by the dramatic enhancement of the net particle
current. Magnitude and direction of the current become extremely sensitive to
the actual size of the condensate, which can then be made to shuttle between
two docking stations, transporting particles in one direction, with an
efficiency much larger than conventional diffusive models predict
Observation of enhanced rate coefficients in the H + H H + H reaction at low collision energies
The energy dependence of the rate coefficient of the H reaction has been measured in the range of
collision energies between K and
mK. A clear deviation of the rate coefficient from the value expected on the
basis of the classical Langevin-capture behavior has been observed at collision
energies below K, which is attributed to the joint
effects of the ion-quadrupole and Coriolis interactions in collisions involving
ortho-H molecules in the rotational level, which make up 75% of the
population of the neutral H molecules in the experiments. The experimental
results are compared to very recent predictions by Dashevskaya, Litvin, Nikitin
and Troe (J. Chem. Phys., in press), with which they are in agreement.Comment: 14 pages, 3 figure
Screening and inplane magnetoresistance of anisotropic two-dimensional gas
In order to split the influence of the orbital and spin effects on the
inplane magnetoresistance of a quasi two-dimensional gas we derive its linear
response function and dielectric function for the case of anisotropic effective
mass. This result is used for the calculation of elastic transport relaxation
time of a quasi two dimensional system in a parallel magnetic field. The
relaxation time is proved to be isotropic in the low density limit for the case
of charged impurity scattering, allowing to separate the two contributions.Comment: as published. 4 pages, 1 figur
Multilevel blocking approach to the fermion sign problem in path-integral Monte Carlo simulations
A general algorithm toward the solution of the fermion sign problem in
finite-temperature quantum Monte Carlo simulations has been formulated for
discretized fermion path integrals with nearest-neighbor interactions in the
Trotter direction. This multilevel approach systematically implements a simple
blocking strategy in a recursive manner to synthesize the sign cancellations
among different fermionic paths throughout the whole configuration space. The
practical usefulness of the method is demonstrated for interacting electrons in
a quantum dot.Comment: 4 pages RevTeX, incl. two figure
Persistent holes in a fluid
We observe stable holes in a vertically oscillated 0.5 cm deep aqueous
suspension of cornstarch for accelerations a above 10g. Holes appear only if a
finite perturbation is applied to the layer. Holes are circular and
approximately 0.5 cm wide, and can persist for more than 10^5 cycles. Above a =
17g the rim of the hole becomes unstable producing finger-like protrusions or
hole division. At higher acceleration, the hole delocalizes, growing to cover
the entire surface with erratic undulations. We find similar behavior in an
aqueous suspension of glass microspheres.Comment: 4 pages, 6 figure
Coulombically Interacting Electrons in a One-dimensional Quantum Dot
The spectral properties of up to four interacting electrons confined within a
quasi one--dimensional system of finite length are determined by numerical
diagonalization including the spin degree of freedom. The ground state energy
is investigated as a function of the electron number and of the system length.
The limitations of a description in terms of a capacitance are demonstrated.
The energetically lowest lying excitations are physically explained as
vibrational and tunneling modes. The limits of a dilute, Wigner-type
arrangement of the electrons, and a dense, more homogeneous charge distribution
are discussed.Comment: 10 pages (excl. Figures), Figures added in POSTSCRIPT, LaTe
The two electron artificial molecule
Exact results for the classical and quantum system of two vertically coupled
two-dimensional single electron quantum dots are obtained as a function of the
interatomic distance (d) and with perpendicular magnetic field. The classical
system exhibits a second order structural transition as a function of d which
is smeared out and shifted to lower d values in the quantum case. The
spin-singlet - spin-triplet oscillations are shifted to larger magnetic fields
with increasing d and are quenched for a sufficiently large interatomic
distance.Comment: 4 pages, 4 ps figure
Localization in non-chiral network models for two-dimensional disordered wave mechanical systems
Scattering theoretical network models for general coherent wave mechanical
systems with quenched disorder are investigated. We focus on universality
classes for two dimensional systems with no preferred orientation: Systems of
spinless waves undergoing scattering events with broken or unbroken time
reversal symmetry and systems of spin 1/2 waves with time reversal symmetric
scattering. The phase diagram in the parameter space of scattering strengths is
determined. The model breaking time reversal symmetry contains the critical
point of quantum Hall systems but, like the model with unbroken time reversal
symmetry, only one attractive fixed point, namely that of strong localization.
Multifractal exponents and quasi-one-dimensional localization lengths are
calculated numerically and found to be related by conformal invariance.
Furthermore, they agree quantitatively with theoretical predictions. For
non-vanishing spin scattering strength the spin 1/2 systems show
localization-delocalization transitions.Comment: 4 pages, REVTeX, 4 figures (postscript
- …
