36 research outputs found
Molecular cloning and expression of the biodegradative threonine dehydratase gene ( tdc ) of Escherichia coli K12
The biodegradative threonine dehydratase gene ( tdc ) of Escherichia coli was cloned by isolating a dehydratase-negative mutant after Tn5 mutagenesis, cloning the tdc ::Tn5 DNA into pBR322 and then replacing the Tn5 element on the plasmid in vivo. Subcloning and nucleotide sequence data revealed two distinct procaryotic promoterlike elements each containing a potential CAP-binding site and AT-rich regions, and a Shine-Dalgarno sequence. One of these putative promoters, P 2 , was located immediately upstream from the tdc coding region, and a second, P 1 , was approximately 1 kilobase upstream from P 2 . Deletion of the potential CAP-binding site from P 1 prevented tdc gene expression. However, removal of P 2 and a large segment of the upstream DNA had no discernible effect on dehydratase synthesis. A 936-base pair open reading frame was found between P 1 and the tdc coding region, which produced a polypeptide of about 32 kilodaltons. The data suggest that P 1 , and not P 2 , is necessary for tdc gene expression, and that the DNA sequences coding for the 32 KD polypeptide and threonine dehydratase are part of a single transcriptional unit.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/47562/1/438_2004_Article_BF00425676.pd
The BioPAX community standard for pathway data sharing
Biological Pathway Exchange (BioPAX) is a standard language to represent biological pathways at the molecular and cellular level and to facilitate the exchange of pathway data. The rapid growth of the volume of pathway data has spurred the development of databases and computational tools to aid interpretation; however, use of these data is hampered by the current fragmentation of pathway information across many databases with incompatible formats. BioPAX, which was created through a community process, solves this problem by making pathway data substantially easier to collect, index, interpret and share. BioPAX can represent metabolic and signaling pathways, molecular and genetic interactions and gene regulation networks. Using BioPAX, millions of interactions, organized into thousands of pathways, from many organisms are available from a growing number of databases. This large amount of pathway data in a computable form will support visualization, analysis and biological discovery. © 2010 Nature America, Inc. All rights reserved
Evaluation of Wearable Digital Devices in a Phase I Clinical Trial
We assessed the performance of two US Food and Drug Administration (FDA) 510(k)âcleared wearable digital devices and the operational feasibility of deploying them to augment data collection in a 10âday residential phase I clinical trial. The Phillips Actiwatch Spectrum Pro (Actiwatch) was used to assess mobility and sleep, and the Vitalconnect HealthPatch MD (HealthPatch) was used for monitoring heart rate (HR), respiratory rate (RR), and surface skin temperature (ST). We measured data collection rates, compared device readouts with anticipated readings and conventional inâclinic measures, investigated data limitations, and assessed user acceptability. Six of nine study participants consented; completeness of data collection was adequate (> 90% for four of six subjects). A good correlation was observed between the HealthPatch device derived and inâclinic measures for HR (Pearson r = 0.71; P = 2.2eâ16) but this was poor for RR (r = 0.08; P = 0.44) and ST (r = 0.14; P = 0.14). Manual review of electrocardiogram strips recorded during reported episodes of tachycardia > 180 beats/min showed that these were artefacts. The HealthPatch was judged to be not fitâforâpurpose because of artefacts and the need for timeâconsuming manual review. The Actiwatch device was suitable for monitoring mobility, collecting derived sleep data, and facilitating the interpretation of vital sign data. These results suggest the need for fitâforâpurpose evaluation of wearable devices prior to their deployment in drug development studies